• Title/Summary/Keyword: cross section shape

Search Result 746, Processing Time 0.031 seconds

A Study on Characteristics of the Material Flow in Side-Extrusion (측방압출에서의 재료유동특성에 관한 연구)

  • 김영호;김강수;윤상식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.232-235
    • /
    • 1995
  • A side-extrusion model, meant for deeper understanding of the material flow in the CONFORM (continuous extrusion forming) of trub shaped aluminum profiles is presented. In order to get the desirded straight shape of the extrudate,every part of its cross-section must exit the die with the same velocity. Problem is assumed by plane strain UBET-model to analyze it in a simplified way. This has been done by studying the side-extrusion through a two -hole die face. The flow is balanced by determining the optimum lengths of the bearing lands, i.e., those lengths which result in equal exit velocities of the extrudates. Furthermore, the material flow, as influenced by the punch velocity, has been investigated.

  • PDF

Changes of Blood Flow Characteristics due to Catheter Obstruction during the Coronary Angioplasty

  • Suh, Sang-Ho;Roh, Hyung-Woon;Kwon, Hyuck-Moon;Lee, Byoung-Kwon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 2004
  • Catheters are used to measure translesional pressure gradients in the stenosed coronary arteries. Uses of catheters during coronary angioplasty cause flow obstructions. A narrowed flow cross section with catheter effectively introduced a tighter stenosis than the enlarged residual stenoses after balloon angiplasty. Catheters in blood vessels cause pressure gradient rise and blood flow drop during the measurements. In this study, three dimensional computer simulations are conducted to investigate the flow blockage effects due to the catheter obstructions during the coronary angioplasty. The computer simulation models are generated by the data, which are measured by coronary angiogram, and the blood is treated as non-Newtonian fluid. The velocity, pressure, and wall shear stress variations are observed for the estimate of damages of blood vessel. This study is also extended to investigate the effects of stenotic vessel size, and shape and catheter size and location.

  • PDF

Mechanics of lipid membranes subjected to boundary excitations and an elliptic substrate interactions

  • Kim, Chun Il
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • We present relatively simple derivations of the Helfrich energy potential that has been widely adopted in the analysis of lipid membranes without detailed explanations. Through the energy variation methods (within the limit of Helfrich energy potential), we obtained series of analytical solutions in the case when the lipid membranes are excited through their edges. These affordable solutions can be readily applied in the related membrane experiments. In particular, it is shown that, in case of an elliptic cross section of a rigid substrate differing slightly from a circle and subjected to the incremental deformations, exact analytical expressions describing deformed configurations of lipid membranes can be obtained without the extensive use of Mathieu's function.

A Study on the Temperature Distribution of Metal Casting Mould (주조금형(鑄造金型)의 온도분포(溫度分布)에 관한 연구(硏究))

  • Min, Soo-Hong;Kim, Ok-Sam;Koo, Bon-Kwan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • The process of solidification of metal is accompanied by liquid-solid change and known as Stefan's heat conduction problem on the moving boundary. In this study the temperature distribution in ingot and metallic mould during casting was analyzed by the two dimensional heat conduction theory. The transient temperature distribution was numerically calculated using a finite element method on the nodal point of mesh screen representing ingot and mould cross section. The theory was applied on the casting of aluminum(purity ; 99%) in flat ingot mould of GC25. The analysis will make it possible to calculate an optimum mould shape of which temperature gradient becomes minimum.

  • PDF

3D shape reconstruction using laser slit beam and image block (레이저슬릿광과 이미지블럭을 이용한 경면물체 형상측정알고리즘)

  • 곽동식;조형석;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.93-96
    • /
    • 1996
  • Structured laser light is a widely used method for obtaining 3D range information in Machine Vision. However, The structured laser light method is based on assumption that the surface of objects is Lambertian. When the observed surfaces are highly specularly reflective, the laser light can be detected in various parts on the image due to a specular reflection and secondary reflection. This makes wrong range data and the image sensor unusable for the specular objects. To discriminate wrong range data from obtained image data, we have proposed a new algorithm by using the cross section of image block. To show the performance of the proposed method, a series of experiments was, carried out on: the simple geometric shaped objects. The proposed method shows a dramatic improvement of 3D range data better than the typical structured laser light method.

  • PDF

A Study on the Passive Microvalve Applicable to Drainage Device for Glaucoma

  • Sim, Tae-Seok;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.253-258
    • /
    • 2002
  • This paper reports the design, modeling, fabrication and measurement of passive microvalves, which are applicable to glaucoma implants. The proposed microvalves were designed using fluidic theory. The microvalves consisted of microchannels and chambers. The microchannels had a constant fluidic resistance generating a pressure difference. Six kinds of microvalves were designed using fluidic equations for laminar flow and fabricated to examine the influences of chamber size, channel length and the shape of channel cross section. The pressure difference between the designed microvalve and the fabricated microvalve was measured to be less than 4%.

A simplified dynamic analysis for estimation of the effect of rotary inertia and diaphragmatic operation on the behaviour of towers with additional masses

  • Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.277-288
    • /
    • 2000
  • The present paper, deals with the dynamic analysis of a thin-walled tower with varying cross-section and additional masses. It, especially, deals with the effect of the rotary inertia of those masses, which have been neglected up to now. Using Galerkin's method, we can find the spectrum of the eigenfrequencies and, also, the shape functions. Finally, we can solve the equations of the problem of the forced vibrations, by using Carson-Laplace's transformation. Applying this method on a tall mast with 2 concentrated masses, we can examine the effect of the rotary inertia and the diaphragmatic operation of the above masses, on the 3 first eigenfrequencies.

Heat Transfer Analysis of Energy Pile Considering heat transfer medium (열전달 매질을 고려한 에너지파일의 열전달 거동 분석)

  • Kim, Do-Hyun;Jeong, Sang-Seom;Song, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.963-970
    • /
    • 2010
  • In this study, a series of thermal numerical analysis was conducted through the ground condition and the length and shape of the energy pile. In order to investigate the effect of the thermal properties of ground condition, grout and pile type on heat transfer efficiency in the U-type heat exchanger in energy pile, thermal numerical analysis was done by using ABAQUS. ABAQUS, a finite element analyzing program, was employed to evaluate the temperature distribution on the cross section of energy pile system incorporating HDPE - grout - pile - Ground condition which consists of clay, sand, rock type soil and ground water.

  • PDF

Electromagnetic Scattering Analysis from Inhomogeneous Material Scatterers (불균질 매질내에서의 전자파 산란 해석)

  • 김태용;김석재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.478-484
    • /
    • 2003
  • The electromagnetic wave scattering problems from inhomogeneous material bodies are considered. The formulation is made in terms of mixed potentials for the moment methods (MoM). The surfaces of a three-dimensional inhomogeneous scatterer of arbitrary shape are divide into triangular patches for descretization. Application of the boundary conditions leads to the coupled surface integral equations to be satisfied for the unknown surface equivalent electric and magnetic currents. The radar cross-section (RCS) for some structures is computed and the results are compared with the reported data.

NEW METHODS OF THE GROWING COMPLICATED SHAPED SAPPHIRE PRODUCTS: VARIABLE SHAPING TECHNIQUE AND LOCAL DYNAMIC SHAPING TECHNIQUE

  • Borodin, V.A.;Sidorov, V.V.;Steriopolo, T.A.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.209-225
    • /
    • 1999
  • Detailed description of the crystal growth methods permitting one to obtain complicated shape crystals from the melt is given. The variable shaping technique provides the growth of crystals with a discrete altering cross-section configuration during crystallization. The dynamic local shaping technique enables one to grow items with a continuous alteration of the side surface profile by a preset program.

  • PDF