• Title/Summary/Keyword: cross section shape

Search Result 746, Processing Time 0.031 seconds

Effect of Desiccant and Channel Geometries on the Performance of Desiccant Rotor (제습제와 채널이 제습로터 성능에 미치는 영향)

  • Chung, Jae-Dong;Lee, Dae-Young;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.569-576
    • /
    • 2007
  • The desiccant rotor is the most essential component of desiccant cooling system, but one of its drawbacks to spread out is rotor size. To reduce the size of rotor the analysis of rotor performance is crucial. Systematic examination on the effect of desiccant and channel geometries has been conducted based on the numerical program previously developed. Considered parameters related to channel geometries are channel shape and cross section area of channel, and parameters related to desiccant are mass fraction, heat capacity, density, maximum water uptake and separation factor of isotherm. Considerable reduction of rotor size is expected by adjusting the parameters.

A Numerical Study on the Film-Cooling Characteristics of Gas Turbine Blade using CO2 (이산화탄소를 이용한 가스터빈 블레이드 막냉각 특성 연구)

  • Kim, Sang-Gwon;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.41-44
    • /
    • 2012
  • In order to cool the turbine blade under high temperature operating conditions, the film-cooling method is generally applied. In this study, $CO_2$ was used as working fluid and it helped the operating system to prevent the loss of compressed air. The trapezoidal diffuser shape was adopted at the cross section of hole and the characteristics of heat flow with various working fluids were numerically studied. In particular, the different mixture ratios of $CO_2$, such as various density ratios of 0.2, 0.8, and 1.0, respectively, were considered. Numerical results are graphically depicted with various conditions.

Optimization of the Automotive Side Door Impact Beam Considering Static Requirement (정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계)

  • 송세일;차익래;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

Modal Characteristic Optimization of Rotating Cantilever Beams via Shape Variation of Cross-section by Multi-stage Spline Function (다단 Spline 곡선에 의한 단면형상 변화를 통한 회전 외팔보의 진동특성 최적화)

  • 조정은;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • When structures undergo rotating motion, their modal characteristics often vary significantly. The variations of modal characteristics are determined from their geometric shapes and their rotating angular speed. Since the modal characteristics vary during the operation of the structures, they should be carefully scrutinized. In this paper, rotating cantilever beams are chosen as design targets which need to meet some specific design requirements. The thickness and the width of the rotating beams are assumed as multi-stage spline functions and the stage values for the thickness and the width are used as design variables for the optimization problems.

Prediction of the Heat-Affected Zone in the Micro Electric Discharge Machining (미세 방전가공에서의 열영향층 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.422-425
    • /
    • 2005
  • This study predicts the heat-affected zone (HAZ) after electrical discharge machining. To predict HAZ, the temperature distribution is calculated using FEM. Heat flux is calculated from electrical energy, and it can be assumed Gaussian distribution. Plasma channel expands as time goes. Copper and NAK80 are used as the workpiece material. The depth of HAZ in simulation is determined by temperature distribution. The simulation results were compared with a developed actual single discharge crater. Through investigating the cross section of simulated & actual craters, the depth of HAZ in simulation and experiment are compared. Simulation model can predict the crater shape.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion (평다이를 사용한 편심 압출가공에서의 비유동 영역의 형상과 굽힘 속도 분포에 관한 상계해석)

  • Kim, Jin-Hoon;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.177-185
    • /
    • 1998
  • The kinematically admissible veolcity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric lane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal one are determined by the minimization of the plastic work and that the curvature of the extruded products increase with the eccentricity.

  • PDF

Manufacturing Technique on the U Type Draw-Bending of Inner Groove Tube (Inner groove tube의 U형 Draw-Bending 가공기술에 관한 연구)

  • Kang, H.S.;Kim, D.S.;Hur, S.;Hong, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.148-151
    • /
    • 2003
  • The purpose of this study is to investigate the manufacturing technique on the U type Draw-Bending of inner groove tube. The U type tube requires the quality of product that satisfy sufficient conditions for a heat exchanger. The mandrel components act the important roles that prevent wrinkles and keep the shape of cross section of bended tube at bending process. We performed the FEM simulation using LS-DYNA software and the bending test of inner groove tube and then, compared bending simulation with bending test results about mandrel ball diameter, mandrel position and optimal clearance between mandrel and tube.

  • PDF

NUMERICAL ANALYSIS OF WAVE FORCES USING BOUNDARY ELEMENT METHOD (경계요소법을 이용한 파역의 수치해석)

  • 김성덕;이상배
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.249-256
    • /
    • 1987
  • Wave forces on fixed two-dimensional objects submerged in water of finite depth were analysed by Boundary Element Method using linear elements.It is assumed that the wave forces may be described by linear theory and that incident wave direction is normal to the objects of infinite length. In this paper, wave forces on a bottom-seated half cross section pipeline, a circular pipeline, a submerged pipeline and submerged breakwater of arbitrary shape were studied. The accuracy of the computational scheme is investigated by comparing the numerical results with the existing laboratory results and analytical solutions of other researchers.

  • PDF

NUMERICAL STUDY OF THE FORMATION OF LINEAR DUNES

  • Zhang Ruyan;Kan Makiko;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Three-dimensional flow over the sand dunes have been studied numerically by using Large-Eddy Simulation (LES) method. In the direction of initial flow and span direction cyclic boundary conditions are imposed for velocity and pressure. The movement of the sand dune which is formed by converging wind direction has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow over the sand dune using standard MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)-(iii) are repeated. The simulated dune, which has initially elliptic cross section, extends at the converging direction, which is known as linear dunes.