• Title/Summary/Keyword: cross section shape

Search Result 746, Processing Time 0.024 seconds

Comparative Pattern Analysis and the Fitness Evaluation of Brassieres (국내.외 브래지어의 패턴비교분석 및 착의평가 연구)

  • Suh, Chu-Yeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.4
    • /
    • pp.673-685
    • /
    • 2010
  • This study evaluates the fitness of brassieres through size measurement, comparative pattern analysis, cross section map analysis, 3-D shape analysis number, and fitness evaluation with a focus on domestic and overseas brands. Experimental brassieres were selected as mold brassieres of 3/4 cup in 75A size that is considered a popular design. Brands of selected brassiere were 2 domestic brands (A, B), 1 licensed brand (C), and 2 overseas brands (D, E). Subjects were 8 women in their early 20's. Data were analyzed by descriptive statistics, analysis of variance, reliability analysis, and factor analysis. The results were as follows; the size and pattern of brassieres showed a difference by each brand even though brassieres are the same design. In the wearing effect of brassieres, overseas brand brassieres played a major role in the breast-up effect, but they were not appropriate for the somatotype of Korean women. Domestic brand brassieres showed the volume-up effect, that was confirmed by the increasing bust circumference, bust depth when subjects wore it. In addition, the licensed brand brassieres showed the correction effect of body shape. Therefore, when purchasing a brassiere, the most important condition is to consider the individual characteristics of the somatotype. The results of factor analysis through a functional evaluation show that wearing satisfaction, size satisfaction, and the position of the bust point were important factors for fitness satisfaction and purchase.

Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy (펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.

Development of the Spent Fuel Rod Cutting Device by Cutter Blade Method (Cutter blade 방식에 의한 사용후핵연료봉 절단 장치 개발)

  • 정재후;윤지섭;홍동회;김영환;김도우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.393-396
    • /
    • 2000
  • Spent fuel rod cutting device should cut a spent fuel rod to an optimal size in order to fast decladding operation. In this paper, for developing spent fuel rod cutting device with cutter blade, rod properties such as dimension and material of zircaloy tube and fuel pellet are investigated at first and then, various methods of existing cutting devices used commercially are investigated and their performance are analyzed and compared. This device is designed to be operated automatically via remote control system considering later use in Hot-Cell (radioactive area) and the mdularization in the structure of this device makes maintenance easy. SUS and Zircaloy-4 are selected as cut material used in the test of spent fuel rod cutting device by cutter blade. In order for constructing the high durable cutter blade, various materials are analyzed in terms of quality, shape, characteristic, and heat treatment, etc. and from these results, spent fuel rod cutting device is designed and manufactured based on the considerations of durability, round shape sustainability of rod cross-section, debris generation, and fire risk, etc.

  • PDF

Theoretical and Experimental Study on a Spin-Stabilized Spherical Rocket (Spin 안정형 구형 로켓트에 관한 이론 및 실험적 연구)

  • Yi, Chong-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.83-96
    • /
    • 1977
  • The combustion chamber and nozzle of an end burning, small spherical rocket is designed. A spherical external shape has a number of advantages such as fixed center-of-gravity and minimum aerodynamic precession torques during flight and a better mass distribution for gyro-stabilization as contrasted to a conventional ogive rocket shape. It is shown that the cross-sectional variation of the end burning solid propellant with length is an exponential geometry to provide a constant thrust-weight ratio of the rocket device during the propellant burning period, and that the factors which affect the attainment of the constant relationship of thrust to weight in the design are the initial propellant area, initial weight of the rocket and propellant density. The measurement of the transient thrust in the ground static test using black powder propellant supports the predicted results. A wind tunnel having a $30{\times}30{\times}75cm$ test section and Mach number 0.11 is constructed, and a simple balance-type device is designed for the measurement of the drag of a spinning sphere. The experimental results indicate that the. spinning has no effect on the magnitude of the drag up to the Reynolds number $3{\times}10^5$. Numerical computation of the flight trajectories for various launching angles is presented, and the gyro-stabilization of spinning sphere is discussed.

  • PDF

An Experimental Study on Flexural Strength of Inverted T-shaped Composite Beams encased with concrete (매립형 역T형 합성보의 휨내력에 관한 실험적 연구)

  • Jang, Hee-Sung;Jeong, Jae-Hun;Kim, Jin- Moo;Joo, Kyong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.145-152
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section is usually located near the top flange of the steel H-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. However, It is not easy for inverted T-shaped composite beam to construct and to apply continuous beam which has negative bending moment. As a result, it would get more workability and decrease capability of lateral buckling and local buckling, if the bottom flange of inverted T-shaped steel used as a form. Therefore. the objectives of this study are to investigate strength and behaviors of inverted T-shaped composite beam which web is encased by concrete and to grasp bending capacity and efficiency of composite by comparing and analyzing in test piece.

  • PDF

Mechanical Property and Process Variables Optimization of Tube-to-Tube Friction Welding for Steel Pipe with 36 mm External Diameter (외경 36mm 강관의 관대관 마찰용접 특성과 공정 변수 최적화)

  • Kong, Yu-Sik;Park, Young Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, for the friction welding with tube-to-tube shape, the feasibility of industry application was determined using analyzing mechanical properties of weld and optimized welding variables was suggested. In order to accomplish this object, rotating speed, friction heating pressure, and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. Weld characteristic was investigated in terms of weld shape and metal loss, and 7mm of metal loss was regarded as the optimal metal loss. By tensile test, tensile strength and yielding strength was measured and fracture was occurred at base metal. In order to optimize the welding condition, fitness function was defined with respect to metal loss and yielding strength and the fitness values for each welding condition could be calculated in experimental range. Consequently, we set the optimal welding condition as the point which had maximum value of fitness function. As the result of this paper the optimal welding variables could be suggested as rotating speed was 1300 rpm, friction heating pressure was 15 MPa, and friction heating time was 10 sec.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

The chemical composition and shape of inclusion of amethyst (자수정 내포물의 형상과 화학조성에 관한 연구)

  • Yoon, Si-Nae;Song, Young-Jun;Yon, Seog-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.207-215
    • /
    • 2010
  • This study was carried out for the purpose of obtaining the basic data for identifying the origin of amethyst. For this, the three dimensional shapes of inclusions contained in various amethyst were observed with Stereo Zoom microscope. The shape and chemical composition of cross section of solid inclusion and the chemical composition of evaporite were investigated by SEM-EDS. The evaporite is made from evaporating of liquid inclusion which is flowed out of amethyst sample by decompressing. Lastly, The trace mineral composition of amethyst was investigated by ICP-AES after digesting the amethyst sample with HF-$H_2SO_4$ solution.

A Study on the Estimation of the Structural Stability of a Container Crane According to the Change of the Boom Shape using Wind Tunnel Test

  • Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.87-94
    • /
    • 2006
  • In this study we carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients were investigated and uplift forces at each supporting point due to the wind load were analyzed.

  • PDF

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.