• 제목/요약/키워드: cross over correction

Search Result 42, Processing Time 0.023 seconds

Analytical determination of shear correction factor for Timoshenko beam model

  • Moghtaderi, Saeed H.;Faghidian, S. Ali;Shodja, Hossein M.
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.483-491
    • /
    • 2018
  • Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the nonuniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

A Simple Bias-Correction Rule for the Apparent Prediction Error

  • Beong-Soo So
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.146-154
    • /
    • 1995
  • By using simple Taylor expansion, we derive an easy bias-correction rule for the apparent prodiction error of the predictor defined by the general M-estimators with respect to an arbitrary measure of prediction error. Our method has a considerable computational advantage over the previous methods based on the resampling thchnique such as Cross-validaton and Boothtrap. Connections with AIC, Cross-Validation and Boothtrap are discussed too.

  • PDF

칼만 RTS 필터를 이용한 선상 중력 자료 보정에 관한 연구 (A Study on Shipborne Gravity Data Correction Using Kalman RTS Filter)

  • 황종선;한현철
    • 자원환경지질
    • /
    • 제43권4호
    • /
    • pp.343-348
    • /
    • 2010
  • 선상 중력 이상값은 기상악화 및 조사 선박의 급작스런 음직임에 의해 많이 왜곡된다. 이러한 자료 왜곡은 잘못된 해석을 유발할 수 있어 필히 제거되어야 하지만 완벽하게 모든 오차를 제거할 수는 없다. 일반적으로 사용하는 교차점 오차 보정은 교차점 자체에 대한 국부적인 보정이기 때문에 교차점 오차 보정을 한 후에도 그 자료에는 많은 오차 값들이 포함되어 있다. 이러한 단점을 해소하기 위하여 교차점에서는 물론이고 모든 자료에 포함되어 있는 오차값들을 최소화하기 위하여 칼만 필터중의 하나인 Rauch-Tung-Striebel(RTS) 필터를 이용하였다. RTS 보정을 수행한결과 자료 변위 폭이 최대 15 mGal에서 2 mGal 미만으로 감소되었고 교차점에서의 오차는 4.21 mGal에서 2.95mGal로 줄어들었다. 이 결과는 RTS 방법이 교차점에서는 물론 모든 자료에 포함되어 있는 오차 값을 최소화 하는데 효율적임을 제시하고 있다.

FastXcorr : 해양지구물리탐사 자료의 빠른 교차점오차 보정을 위한 프로그램 개발 (FastXcorr : FORTRAN Program for Fast Cross-over Error Correction of Marine Geophysical Survey Data)

  • 김경오;강무희;공기수
    • 자원환경지질
    • /
    • 제41권2호
    • /
    • pp.219-223
    • /
    • 2008
  • 해양에서 관측되는 해양지구물리 탐사자료에는 위치오차, 기기오차, 관측오차, 해상 상태 등 다양한 원인에 기인하는 오차가 포함되어 있다. 이에 의해 한 기관에서 해양지구물리 탐사 자료를 취득할 때나 여러 기관에서 취득된 해양지구물리 탐사자료를 취합할 때 많은 교차점오차가 발생하고, 이러한 교차점오차는 부적절한 해석을 야기하는 인위적인 이 상대를 만든다. 교차점오차를 줄이기 위한 다양한 방법들이 제시되었지만, 이들 대부분의 방법들은 교차점을 찾기 위해 각각의 점자료(point data) 혹은 선분자료(segment data)를 모두 비교함으로써, 불필요하게 많은 계산시간을 요구하게 된다. 따라서 본 연구에서는 중복구역나눔 방법을 도입하여 빠르게 교차점을 찾고, 가중치선형내삽 방법을 이용하여 교차점오차를 보정하는 포트란(FORTRAN) 프로그램 (FastXcorr)을 개발하였다.

An Adaptive FEC Mechanism Using Crosslayer Approach to Enhance Quality of Video Transmission over 802.11 WLANs

  • Han, Long-Zhe;Park, Sung-Jun;Kang, Seung-Seok;In, Hoh-Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.341-357
    • /
    • 2010
  • Forward Error Correction (FEC) techniques have been adopted to overcome packet losses and to improve the quality of video delivery. The efficiency of the FEC has been significantly compromised, however, due to the characteristics of the wireless channel such as burst packet loss, channel fluctuation and lack of Quality of Service (QoS) support. We propose herein an Adaptive Cross-layer FEC mechanism (ACFEC) to enhance the quality of video streaming over 802.11 WLANs. Under the conventional approaches, FEC functions are implemented on the application layer, and required feedback information to calculate redundancy rates. Our proposed ACFEC mechanism, however, leverages the functionalities of different network layers. The Automatic Repeat reQuest (ARQ) function on the Media Access Control (MAC) layer can detect packet losses. Through cooperation with the User Datagram Protocol (UDP), the redundancy rates are adaptively controlled based on the packet loss information. The experiment results demonstrate that the ACFEC mechanism is able to adaptively adjust and control the redundancy rates and, thereby, to overcome both of temporary and persistent channel fluctuations. Consequently, the proposed mechanism, under various network conditions, performs better in recovery than the conventional methods, while generating a much less volume of redundant traffic.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

개심술에서 술중 심근보호효과에 관한 임상적연구 (A clinical study on the effects of myocardial protection during open heart surgery)

  • 김근호
    • Journal of Chest Surgery
    • /
    • 제20권2호
    • /
    • pp.230-240
    • /
    • 1987
  • Cardioplegia and myocardial protection were performed under cardiopulmonary bypass during open-heart surgery with the use of cold St. Thomas Hospital cardioplegic solution [4=C] for the coronary artery perfusion and normal saline solution [4- C] for the topical cardiac cooling. To maintain the state of myocardial protection, coronary artery reperfusion was carried out using St. Thomas Hospital cardioplegic solution at the interval of 30 minutes. A total number of patients studied were 57 cases, including 37 cases of correction for congenital cardiac anomalies and 20 cases for acquired heart valvular diseases. Cardiopulmonary bypass time during the surgery was observed to be average of 87.89*47.55 hours, aortic cross-clamping time to be average of 76.68~44.27 hours raging from 30 to 191 minutes. In order to evaluate the effects of myocardial protection in the surgery, serum enzyme levels were determined. To observe the relationship between aortic cross-clamping time and myocardial protection effects, patients studied were divided into the following 3 groups. I group: aortic cross-clamping time, 60 minutes, II group: aortic cross-clamping time, 90 minutes, III group: aortic cross-clamping time, over 91 minutes. 1. Changes in serum enzyme levels in postoperative period. [1] SCOT; The postoperative value [increased over 200 units] for ischemic myocardial injury during operation was observed in 11 cases [19.3% of the total] of the total patients studied, of which 4 cases [13.3%] in I group, 1 case [10.0%] in II group, and 6 cases [35.3%] in III group. [2] LDH; The positive value [increased over 900 units] for ischemic myocardial injury during operation was observed in 9 cases [15.7% of the total] of the total patients studied, of which 2 cases [6.6%] in I group, 1 case [10.0%] in II group, and 6 cases [35.3%] in III group. [3] CPK; The positive value [increased over 800 units] for ischemic myocardial injury during operation was observed in 10 cases [17. 5% of the total] of the total patients studied, including 4 cases [13. 3%] in I group, 1 case [10.0%] in II group, and 5 cases [29.4%] in III group. 2. The myocardial protection method used in the present study was demonstrated to be effective for the myocardial protection in the surgery with aortic cross-clamping time of up to 90 minutes. A few ischemic myocardial injury were observed in the surgery with aortic cross-clamping time over 91 minutes, but no significant cardiac dysfunction was noted. The surgery with aortic cross-clamping time of up to 191 minutes did not appear to give rise any significant interference with postoperative recovery.

  • PDF

안와파열골절의 비강내 내시경적 접근을 통한 교정에서 수술 전후 안와 용적 변화 (Perioperative Orbital Volume Change in Blowout Fracture Correction through Endoscopic Transnasal Approach)

  • 이재우;남수봉;최수종;강철욱;배용찬
    • Archives of Plastic Surgery
    • /
    • 제36권5호
    • /
    • pp.617-622
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the blowout fractures has many advantages over other techniques. But after removal of packing material, there were some patients with recurrence of preoperative symptoms. Authors tried to make a quantitative anterograde analysis of orbital volume change over whole perioperative period which might be related with recurrence of preoperative symptoms. Methods: 10 patients with pure medial wall fracture(Group I) and 10 patients with medial wall fracture combined with fracture of orbital floor(Group II) were selected to evaluate the final orbital volume change, who took 3 CT scans, pre-, postoperative and 4 months after packing removal. By multiplying cross - section area of orbit in coronal view with section thickness, orbital volume were calculated. Then, mean orbital volume increment after trauma, mean orbital volume decrement after endoscopic correction and volume increment after packing removal were found out. And we tried to find correlations between type of fracture, initial correction rate and final correction rate. Results: The mean orbital volume increment of the fractured orbits were 7.23% in group I and 13.69% in group II. After endoscopic surgery, mean orbital volume decrement were 11.0% in group I and 12.46% in group II. Mean volume increment after packing removal showed 3.10% in group I and 6.50% in group II. The initial correction rate(%) showed linear correlation with final correction rate(%) after packing removal. And there were negative linear correlation between increment percentage of orbital volume by fracture and final correction rate(%). Conclusion: Orbital volume was proved to be increasing after removal of packing or foley catheter and it was dependent upon type of fracture. Overcorrection should be done to improve the final result of orbital blowout fracture especially when there are severe fracture is present.

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

WiBro망에서의 다시점 비디오 스트리밍 서비스를 위한 계층 간 최적화 방식 (CLO (Cross Layer Optimization) Technique for Multi-view Video Streaming Service over WiBro Network)

  • 손정현;조예진;서덕영;박광훈;김규헌
    • 방송공학회논문지
    • /
    • 제13권5호
    • /
    • pp.719-731
    • /
    • 2008
  • 본 논문은 WiBro 망을 통한 다시점 비디오 서비스의 품질을 향상시키기 위하여, 수신자가 느끼는 다시점 비디오 품질을 위한 QoE (Quality of Experience)를 정의하고, 이를 최대화할 수 있는 계층 간 최적화 방식(Cross-Layer Optimization: CLO)을 제안한다. 제안하는 계층 간 최적화 방식(이하 CLO) 알고리즘은 물리계층에서 비디오계층까지 포함한다. 시간과 장소에 따라 변화하는 무선망 상황에서, 다시점 비디오의 시점별 중요도와 시간적 중요도를 구분하여, 프레임 전송 우선순위와 순방향 오류 정정(Forward Error Correction : FEC) 수준을 결정한다. 핸드오버 상황에서 제안하는 CLO 방식을 사용하였을 때 최소의 자원으로 최고대의 QoE를 달성할 수 있음을 시뮬레이션을 통하여 보여준다.