수자원의 정량적인 계획과 관리를 위해서는 정확하고 신뢰성 높은 유량 자료가 필수적이다. 이에 따라 최근에 초음파유량계와 유속지수법 등의 실시간 유량 측정 방법이 도입되고 있다. 이러한 방법들은 단면의 일부분에서 측정한 유속을 이용하여 전체 단면의 유량을 산정하고 있으므로 하천 단면의 2차원적 유속분포에 대한 합리적이고 이론적인 기초가 필요하다. 본 연구에서는 Chiu(1987, 1988)가 제안한 2차원 유속분포식을 자연하천에 적용하고 ADCP 실측 자료를 이용하여 비교 분석함으로써 적용성을 분석하였다. 이를 위해 실측 자료로부터 최대유속과 평균유속을 계산한 후 매개변수 M을 산정하였다. 등유속선 형상 매개변수는 최소자승합 기준의 목적함수를 이용하여 추정하였다. 최적화된 매개변수를 적용하여 도출된 엔트로피 유속분포를 실측 유속분포와 비교한 결과, 대체로 잘 일치하는 것으로 나타났다. 상관도가 높게 나타나는 14개의 실측 자료를 이용하여 매개변수 h, $\beta_i$의 특성을 분석한 후 미측정 단면에 적용할 수 있도록 그 값을 추정하였다. 추정된 매개변수를 검증을 위한 자료에 적용한 결과 역시 실측 자료를 대체로 잘 재현하는 것으로 나타났다. 유량의 경우 최대 7% 의 오차로 실측 자료와 대체로 비슷하게 산정하였다. Chiu의 유속분포식에 관여하는 매개변수를 적절히 추정한다면 자연하천의 유속분포를 잘 모의할 수 있을 것으로 판단된다.
Hore, Sirshendu;Chatterjee, Sankhadeep;Sarkar, Sarbartha;Dey, Nilanjan;Ashour, Amira S.;Balas-Timar, Dana;Balas, Valentina E.
Structural Engineering and Mechanics
/
제58권3호
/
pp.459-473
/
2016
Various vague and unstructured problems encountered the civil engineering/designers that persuaded by their experiences. One of these problems is the structural failure of the reinforced concrete (RC) building determination. Typically, using the traditional Limit state method is time consuming and complex in designing structures that are optimized in terms of one/many parameters. Recent research has revealed the Artificial Neural Networks potentiality in solving various real life problems. Thus, the current work employed the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifier to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. In order to evaluate the proposed method performance, a database of 257 multistoried buildings RC structures has been constructed by professional engineers, from which 150 RC structures were used. From the structural design, fifteen features have been extracted, where nine features of them have been selected to perform the classification process. Various performance measures have been calculated to evaluate the proposed model. The experimental results established satisfactory performance of the proposed model.
러프집합에서 누락된 속성 값들은 Reduct와 Core 계산, 더 나아가서 결정 트리 구축에 있어서 식별 불능의 패턴 부합 문제를 가진다. 현재 누락된 속성 값들의 추정과 관련하여 보편적인 속성 값으로의 대체, 속성들의 모든 가능한 값 할당, 이벤트 포장 방법, C4.5, 특수한 LEM2 알고리즘과 같은 접근방식들이 적용되고 있다. 그렇지만, 이들 접근방식은 결국 전형적으로 자주 등장하는 속성 값 혹은 가장 보편적인 속성 값으로의 단순 대체를 나타내기 때문에, 주요 속성 값들이 누락된 경우에 정보 손실이 큰 의사 결정 규칙들이 유도되기 때문에 의사결정 규칙들의 교차 검증에서 문제가 된다. 본 연구에서는 이러한 문제점을 개선시키기 위해 속성들간에 엔트로피 변동을 활용하여 정보 이득이 높은 방향으로 누락된 속성 값들을 대체하는 방식을 제안한다. 제안된 접근방식에 관한 타당성 검토는 비교적 가까운 유사 관계에 의해 누락 값 대체 방식을 적용하는 ROSE 프로그램과의 비교를 나타낸다.
수자원의 계획 평가 관리 및 수공구조물의 설계를 위해서는 정확하고 신뢰성 높은 유량 자료가 필수적이다. 본 연구에서는 Chiu의 유속분포와 최대유속 추정을 이용하여 하천유량을 계산하는 새로운 방법을 제시하였다. 기존 면적유속법과 비교 검토한 바, 본 연구에서 개발한 방법은 기존 유속면적법과 매우 유사한 하천유량을 보였다. Price-AA를 이용하여 유속을 측정할 경우 측선의 수심에 따라 정해진 지점에서 유속을 측정하여야 하는데, 본 연구에서 제시한 방법을 이용하면 임의의 측선과 측점에서 유속을 측정하여도 정확한 유량계산이 가능하다. 그러나 흐름 단면이 매우 복잡하거나 좌우의 비대칭성이 심한 경우에는 엔트로피 개념의 Chiu의 유속분포가 실제 자연하천의 흐름분포에서 멀어지고 유량산정에 Chiu의 유속분포의 정확도가 떨어지기 때문에 본 연구에서 제시한 방법을 적용하기 어렵다.
The Ministry of Environment have started the 'National Ecosystem Survey' since 1986. It has been carried out nationwide every ten years as the largest survey project in Korea. The second one and the third one produced the GIS-based inventory of species. Three survey methods were different from each other. There were few studies for species distribution using national survey data in Korea. The purposes of this study are to test species distribution models for finding the most suitable modeling methods for the National Ecosystem Survey data and to investigate the modeling results according to survey methods and taxonominal group. Occurrence data of nine species were extracted from the National Ecosystem Survey by taxonomical group (plant, mammal, and bird). Plants are Korean winter hazel (Corylopsis coreana), Iris odaesanensis (Iris odaesanensis), and Berchemia (Berchemia berchemiaefolia). Mammals are Korean Goral (Nemorhaedus goral), Marten (Martes flavigula koreana), and Leopard cat (Felis bengalensis). Birds are Black Woodpecker (Dryocopus martius), Eagle Owl (Bubo Bubo), and Common Buzzard (Buteo buteo). Environmental variables consisted of climate, topography, soil and vegetation structure. Two modeling methods (GAM, Maxent) were tested across nine species, and predictive species maps of target species were produced. The results of this study were as follows. Firstly, Maxent showed similar 5 cross-validated AUC with GAM. Maxent is more useful model to develop than GAM because National Ecosystem Survey data has presence-only data. Therefore, Maxent is more useful species distribution model for National Ecosystem Survey data. Secondly, the modeling results between the second and third survey methods showed sometimes different because of each different surveying methods. Therefore, we need to combine two data for producing a reasonable result. Lastly, modeling result showed different predicted distribution pattern by taxonominal group. These results should be considered if we want to develop a species distribution model using the National Ecosystem Survey and apply it to a nationwide biodiversity research.
Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.
준지도학습(semi-supervised learning)은 목표값이 있는 데이터와 없는 데이터를 모두 이용하는 학습방법이다. 준지도학습에서 최근에 많은 관심을 받는 일치성규칙(consistency regularization)과 데이터 증대를 이용한 준지도학습(unsupervised data augmentation; UDA)은 목표값이 없는 데이터를 증대하여 학습에 이용한다. 그리고 성능 향상을 위해 훈련신호강화(training signal annealing; TSA)와 신뢰기반 마스킹(confidence based masking)을 이용한다. 본 연구에서는 UDA에서 사용하는 KL-정보량(Kullback-Leibler divergence)과 TSA 대신 JS-정보량(Jensen-Shanon divergene)과 역-TSA를 사용하고 신뢰기반 마스킹을 제거하는 방법을 제안한다. 실험을 통해 제안된 방법의 성능이 더 우수함을 보였다.
딥러닝(Deep Learning)은 퍼셉트론을 기반으로 하고 있으며 현재에는 이미지 인식, 음성 인식, 객체 검출 및 약물 개발 등과 같은 다양한 영역에서 사용되고 있다. 이에 따라 학습 알고리즘이 다양하게 제안되었고 신경망을 구성하는 뉴런수도 연구자마다 많은 차이를 보이고 있다. 본 연구는 현재 대표적으로 사용되고 있는 확률적 경사하강법(SGD), 모멘텀법(Momentum), AdaGrad, RMSProp 및 Adam법의 뉴런수에 따른 학습 특성을 분석하였다. 이를 위하여 1개의 입력층, 3개의 은닉층, 1개의 출력층으로 신경망을 구성하였고 활성화함수는 ReLU, 손실 함수는 교차 엔트로피 오차(CEE)를 적용하였고 실험 데이터셋은 MNIST를 사용하였다. 그 결과 뉴런수는 100~300개, 알고리즘은 Adam, 학습횟수(iteraction)는 200회가 딥러닝 학습에서 가장 효율적일 것으로 결론을 내렸다. 이러한 연구는 향후 새로운 학습 데이터가 주어졌을 경우 개발될 알고리즘과 뉴런수의 기준치에 함의를 제공할 것이다.
피부는 외부 오염으로부터 일차적으로 몸을 보호하는 역할을 한다. 피부병이 발생하게 되면 피부의 보호 기능이 저하되므로 신속한 진단과 처치가 필요하다. 최근 인공지능의 발달로 인해 여러 분야에 기술적용을 위한 연구가 이루어지고 있으며, 피부과에서도 인공지능을 활용해 오진율을 줄여 신속한 치료를 받을 수 있는 환경을 만들기 위한 연구가 진행되고 있다. 종래 연구들의 주된 흐름은 발생 빈도가 낮은 피부질환의 진단이었지만, 본 논문에서는 사람들에게 흔히 발생할 수 있고, 개인이 명확히 판별하기 힘든 티눈과 사마귀를 합성곱 신경망을 통해 분류하는 방법을 제안한다. 사용한 데이터셋은 3개의 클래스로 이루어져 있으며, 총 2,515장의 이미지를 가지고 있다, 학습 데이터 부족과 클래스 불균형 문제가 존재한다. 모델의 학습에는 deep metric 손실 함수와 교차 손실 함수를 이용해 각각 성능을 분석하였으며, 정밀도, 재현율, F1 점수, 정확도의 측면에서 비교한 결과 deep metric 손실 함수에서 더 우수한 성능을 보였다.
In this paper, we propose a semi-supervised domain adaptation solution to deal with practical face recognition (FR) scenarios where a single face image for each target identity (to be recognized) is only available in the training phase. Main goal of the proposed method is to reduce the discrepancy between the target and the source domain face images, which ultimately improves FR performances. The proposed method is based on the Domain Adatation network (DAN) using an MMD loss function to reduce the discrepancy between domains. In order to train more effectively, we develop a novel loss function learning strategy in which MMD loss and cross-entropy loss functions are adopted by using different weights according to the progress of each epoch during the learning. The proposed weight adoptation focuses on the training of the source domain in the initial learning phase to learn facial feature information such as eyes, nose, and mouth. After the initial learning is completed, the resulting feature information is used to training a deep network using the target domain images. To evaluate the effectiveness of the proposed method, FR performances were evaluated with pretrained model trained only with CASIA-webface (source images) and fine-tuned model trained only with FERET's gallery (target images) under the same FR scenarios. The experimental results showed that the proposed semi-supervised domain adaptation can be improved by 24.78% compared to the pre-trained model and 28.42% compared to the fine-tuned model. In addition, the proposed method outperformed other state-of-the-arts domain adaptation approaches by 9.41%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.