• Title/Summary/Keyword: crop models

Search Result 343, Processing Time 0.023 seconds

Analysis of Crop Survey Protocols to Support Parameter Calibration and Verification for Crop Models of Major Vegetables (주요 채소 작물 대상 작물 모형 모수 추정 및 검증을 지원하기 위한 생육 조사 프로토콜 분석)

  • Kim, Kwang Soo;Kim, Junhwan;Hyun, Shinwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • Crop models have been used to predict vegetable crop yield, which would have a considerable economic impact on consumers as well as producers. A small number of models have been developed to estimate growth and yield of vegetables due to limited availability of growth observation data in high-quality. In this study, we aimed to analyze the protocols designed for collection of the observation data for major vegetable crops including cabbage, radish, garlic, onion and pepper. We also designed the protocols suitable for development and verification of a vegetable crop growth model. In particular, different measures were proposed to improve the existing protocol used by Statistics Korea (KOSTAT) and Rural Development Administration (RDA), which would enhance reliability of parameter estimation for the crop model. It would be advantageous to select sampling sites in areas where reliable weather observation data can be obtained because crop models quantify the response of crop growth to given weather conditions. It is recommended to choose multiple sampling sites where climate conditions would differ. It is crucial to collect time series data for comparison between observed and simulated crop growth and yield. A crop model can be developed to predict actual yield rather than attainable yield using data for crop damage caused by diseases and pests as well as weather anomalies. A bigdata platform where the observation data are to be shared would facilitate the development of crop models for vegetable crops.

Development of an Algorithm for Searching Optimal Temperature Setpoint for Lettuce in Greenhouse Using Crop Growth Model (작물생장모델을 이용한 상추의 온실 최적설정온도 탐색 알고리즘의 개발)

  • 류관희;김기영;김희구;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 1999
  • This study was conducted to develop a searching algorithm for optimal daily temperature setpoint greenhouse. An algorithm using crop growth and energy models was developed to determine optimum crop growth environment. The results of this study were as follows: 1. Mathematical models for crop growth and energy consumption were derived to define optimal daily temperature setpoint. 2. Optimum temperature setpoint, which could maximize performance criterion, was determined by using Pontryagin maximum principle. 3. Dynamic control of daily temperature using the developed algorithm showed higher performance criterion than static control with fixed temperature setpoint. Performance criteria for dynamic control models were with simulated periodic weather data and with real weather data, increased by 48% and 60%, respectively.

  • PDF

Determination of Regression Model for Estimating Root Fresh Weight Using Maximum Leaf Length and Width of Root Vegetables Grown in Reclaimed Land (간척지 재배 근채류의 최대 엽장과 엽폭을 이용한 지하부 생체중 추정용 회귀 모델 결정)

  • Jung, Dae Ho;Yi, Pyoung Ho;Lee, In-Bog
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.204-213
    • /
    • 2020
  • BACKGROUND: Since the number of crops cultivated in reclaimed land is huge, it is very difficult to quantify the total crop production. Therefore, a non-destructive method for predicting crop production is needed. Salt tolerant root vegetables such as red beets and sugar beet are suitable for cultivation in reclaimed land. If their underground biomass can be predicted, it helps to estimate crop productivity. Objectives of this study are to investigate maximum leaf length and weight of red beet, sugar beet, and turnips grown in reclaimed land, and to determine optimal model with regression analysis for linear and allometric growth models. METHODS AND RESULTS: Maximum leaf length, width, and root fresh weight of red beets, sugar beets, and turnips were measured. Ten linear models and six allometric growth models were selected for estimation of root fresh weight and non-linear regression analysis was conducted. The allometric growth model, which have a variable multiplied by square of maximum leaf length and maximum leaf width, showed highest R2 values of 0.67, 0.70, and 0.49 for red beets, sugar beets, and turnips, respectively. Validation results of the models for red beets and sugar beets showed the R2 values of 0.63 and 0.65, respectively. However, the model for turnips showed the R2 value of 0.48. The allometric growth model was suitable for estimating the root fresh weight of red beets and sugar beets, but the accuracy for turnips was relatively low. CONCLUSION: The regression models established in this study may be useful to estimate the total production of root vegetables cultivated in reclaimed land, and it will be used as a non-destructive method for prediction of crop information.

The growth and yield changes of foxtail millet (Setaria italic L.), proso millet (Panicum miliaceum L.), sorghum (Sorghum bicolor L.), adzuki bean (Vigna angularis L.), and sesame (Sesamum indicum L.) as affected by excessive soil-water

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun;Kang, Hang Won
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.547-559
    • /
    • 2016
  • The objectives of this study were to investigate the effects of excessive soil-water on crop growth and to predict decrease of yields caused by excessive soil-water. The following five crops were selected for investigation: foxtail millet, proso millet, sorghum, adzuki bean, and sesame. These were planted in pots and a soil-water table was set to 10cm for 10 days. Crop susceptibility (CS) factors and stress-day indexes (SDI) were calculated for each crop to estimate effects of excessive soil-water. SDI models were calculated using CS and SDI data for each crop and predicted the yields of crops cultivated in paddy fields. All crops were cultivated in paddy fields with different soil water contents to evaluate the yield-SDI models. Results showed that yields decreased most when crops were affected by excessive soil-water at the early development stage. Decrease of yields was the greatest when the excessive soil-water treatment was applied at early growth stage. In the field experiment, crops from soils with the greatest soil-water content had the smallest yield, while ones from soils with the smallest soil water contents showed the greatest yields. Observed yields from the field and predicted yields from SDI models showed the least correlation for proso millet, foxtail millet, and adzuki bean and the greatest correlation for sesame. In conclusion, proso millet, foxtail millet, and adzuki bean were more susceptible to soil water than other crops, while sorghum and sesame were more suitable to cultivation in paddy fields.

Applicability Analysis of Major Crop Models on Korea for the Adaptation to Climate Change (기후변화 대응을 위한 주요 작물모델의 국내 적용성 분석)

  • Song, Yongho;Lim, Chul-Hee;Lee, Woo-Kyun;Eom, Ki-Cheol;Choi, Sol-E;Lee, Eun Jung;Kim, Eunji
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • Suitable climate condition is essential for stable growth of crops which directly leads to an increase in crop production. Preceding domestic researches mostly used crop models to predict grain or crop yield in relation to climate change. However, the use of various models and input data based on foreign background lowered the reliability for result. Therefore in this study, we evaluated domestic applicability by comparing and analyzing various crop models developed abroad. In addition, we selected models based on the possibility of acquiring input data and suggested domestic applicability.

A Study on Development of Main Producing Areas for Industrialization of complex and of fusion in Field

  • Young-Jun Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.331-331
    • /
    • 2022
  • This research aims to developing new commercialization project of convergence agricultural industrial model. First, we established an inventory for the planning of convergence agricultural industrial model categorize the relevant factors identified, and then suggested three models which are the business profit model for convergence agriculture industrialization, the resource recycling complex and agricultural tourism model, and the smart agricultural model. Second, in order to investigate the feasibility of each industrial model, we investigated the willingness to participate in the project according to the pilot models such as related organizations and management agencies, and proposed the result of business feasibility analysis. Finally, we suggested the establishment of a demonstration complex through the systemization of element technologies at two models. The related systems and technologies was reviewed as a new commercialization plan through the modeling of convergence agricultural industrial types in main crop production complex presented, and set up mid- to long-term development direction. The results of this study can be applied to the design of convergence agricultural industrial model in main crop production complex.

  • PDF

Requirement Analysis of a System to Predict Crop Yield under Climate Change (기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석)

  • Kim, Junhwan;Lee, Chung Kuen;Kim, Hyunae;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.

Crop Control by Using Neural Network in Edger Mill (신경망을 이용한 Edger압연 크롭저감 연구)

  • 천명식;장대섭;이준정
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.438-446
    • /
    • 1999
  • Crop minimization of the top and bottom ends of hot rolled plate, in a plate, in a plate mill, has been investigated. The existing model to determine the edging pattern at the finishing rolling pass was not reasonable to get high width accuracy and rolling yields. New models including width prediction have been formulated by using neural network model of back propagation learning algorithm and statistical analysis based on the actual production rolling data to give the optimal pattern for minimizing trimming loss. Using these models, at a given rolling condition of broadside pass and finishing pass and the permissible condition of width variation, it was possible to minimize crip at the top and bottom ends according to optimum procedure in plate mill. An application to improve the plan view pattern reduced width variation by 23% and crop length by 30% on average with an effective fishtail crop shape.

  • PDF

Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks (인공신경망 기법을 이용한 장래 잠재증발산량 산정)

  • Lee, Eun-Jeong;Kang, Moon-Seong;Park, Jeong-An;Choi, Jin-Young;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.