• Title/Summary/Keyword: crop growth rate

Search Result 1,058, Processing Time 0.029 seconds

Effects of Water Deficit on Leaf Growth during Vegetative Growth Period in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Leaf area is critical for crop light interception, and thereby has a substantial influence on crop yield. This experiment was conducted to characterize the development of soybean [Glycine max (L.) Merr.] leaf area. Plastochron index and leaf relative growth rate of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. First, plastochron ratio (PR) and plastochron index (PI) were evaluated in greenhouse to compare the leaf growth rate between two genotypes under well-watered condition. There was reasonable constancy of PR between two genotypes. The PR means of Jackson and PI416937 were 0.41 and 0.44, respectively. A fairly smooth increase of PI during vegetative stage was observed. Second, the relative growth rates were graphed against leaf area, normalized with respect to final leaf area, under well-watered and water-deficit conditions. Leaf growth was sustained longer in well-watered condition than water-deficit condition and there was a sizable proportion of leaves which was ceased earlier their growth in water-deficit condition compared to well-watered condition. The leaf relative growth rate of Jackson until leaves had completed at 45% of their growth during water deficit period was higher than that of PI416937.

  • PDF

Growth Characteristics as Affected by Polyethylene Film-Mulching in Sesame

  • Lee, Sung-Woo;Kang, Churl-Whan;Kim, Dong-Hwi;Shim, Kang-Bo;Seong, Nak-Sul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.269-272
    • /
    • 2002
  • This study was carried out to investigate varietal differences on growth characteristics under the conditions of PE film-mulching and non-mulching in sesame. At maturing stage from 76 to 95 days after sowing, Yangbaeckkae, non-branching plant type, under non-mulching showed larger leaf area index (LAI) than that of film-mulching, while plant height and the number of capsules per plant were similar to those of film-mulching. LAI of Ahnsankkae, branching plant type, under non-mulching was similar to film-mulching, while plant height and the number of capsules per plant were smaller than those of film-mulching. Net assimilation rate (NAR) of two varieties under non-mulching was lower at seedling stage from 25 to 35 days after sowing but higher at flowering stage from 45 to 55 days after sowing. At maturing stage from 66 to 77 days after sowing, NAR and crop growth rate (CGR) of Yangbaeckkae under non-mulching were greater than those of film-mulching, whereas those of Ahnsankkae under non-mulching were lesser than those of film-mulching. Yield under non-mulching was decreased by 7 % in Yangbaeckkae and 33 % in Ahnsankkae compared with that of film-mulching, therefore Yangbaeckkae was more adaptable for non-mulching than Ahnsankkae. Main factors decreasing yield of Yangbaeckkae under non-mulching were small LAI, NAR, and CGR at the stage of young seedling, and small number of capsules at early maturing stage from first flowering to 20 days after first flowering.

Emergence Rate and Growth Characteristics of Ginseng Affected by Different Types of Organic Matters in Greenhouse of Direct-Sowing Culture (비닐하우스에서 인삼 직파재배 시 유기물 처리에 따른 연차간 입모율 및 생육특성)

  • Park, Hong Woo;Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Lee, Young Seob;Kim, Young Chang;Park, Kee Choon;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • Shading and soil environment are the main factors of growth and yield in ginseng (Panax ginseng C. A. Meyer). Ginseng yield is directly related to survival rate because of increased missing plant for their growing period. Under field conditions, diseases and pests significantly affect plant survival rate. We evaluated the seedling establishment, growth and ginsenoside of the ginseng plants, under controlled management conditions in a plastic greenhouse, when their treated with different types of organic matter. Ginseng seeds were sown at a rate of three seeds per hole, and the seeding space measured $10cm{\times}15cm$. Compared to the control, treatment of cattle manure vermicompost (CMV) was shown to increase seedling establishment and decrease ginsenoside content. Root weights of plants treated with CMV were higher than those of plants treated with other types of organic matter. In addition, seedling establishment of 2-year-old ginseng plants was decreased when it was compared to that of 1-year-old ginseng plants. Our results indicated that organic matter type and rate were associated with seedling establishment, growth characteristic and ginsenoside content in greenhouse of ginseng direct-sowing culture.

Impact of climate variability and change on crop Productivity (기후변화에 따른 작물 생산성반응과 기술적 대응)

  • Shin Jin Chul;Lee Chung Geun;Yoon Young Hwan;Kang Yang Soon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.12-27
    • /
    • 2000
  • During the recent decades, he problem of climate variability and change has been in the forefront of scientific problems. The objective of this study was to assess the impact of climate variability on crop growth and yield. The growth duration was the main impact of climate variability on crop yield. Phyllochronterval was shortened in the global worming situations. A simple model to describe developmental traits was provided from heading data of directly seeded rice cultivars and temperature data. Daily mean development rate could be explained by the average temperature during the growth stage. Simple regression equation between daily mean development rate(x) and the average temperature(y) during the growth period as y = ax + b. It can be simply modified as x = 1/a $\ast$ (y-b). The parameters of the model could depict the thermo sensitivity of the cultivars. On the base of this model, the three doubled CO2 GCM scenarios were assessed. The average of these would suggest a decline in rice production of about 11% if we maintained the current cultivars. Future cultivar's developmental traits could be suggested by the two model parameters.

  • PDF

Effect of High Nitrogen Application on Two Components of Dark Respiration in a Rice Cultivar Takanari

  • Akita, Shigemi;Lee, Kwang-hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.323-327
    • /
    • 2002
  • Plant growth and the two components of respiration, growth and maintenance, were compared between low and high nitrogen applications in hydroponic culture on a high-yielding rice cultivar 'Takanari' (Oryza sativa L.). Grain yield decreased by high nitrogen application, and thus this cultivar has low adaptability to nitrogen. Growth efficiency (GE) and net assimilation rate (NAR) were lower in the high-nitrogen plot. The maintenance coefficient (m) and growth coefficient (g) of dark respiration were 0.0111 $d^{-1}$ and 0.196 in the low-nitrogen plot and 0.0166 $d^{-1}$ and 0.237 in the high-nitrogen plot, respectively. Thus, high nitrogen application increased both g and m. Calculated $R_m$ (maintenance respiration rate) was 70 and 90% of total respiration rate at heading, respectively. The significance of nitrogen adaptability and g was discussed.

Effects of Ridge Height in Dry Paddy Field on Growth and Seed Yield of Soybean Cultivars

  • Seong, Rak-Chun;Park, Sei-Joon;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.88-92
    • /
    • 2000
  • Excessive soil water in paddy field induces growth losses during the vegetative stages of soybean plants. Our objectives were to know growth responses of soybean as affected by the level of ridge heights. A field experiment was conducted at the Research Farm of Korea University near Seoul in 1996. Ten cultivars of soybean (Glycine max (L.) Merrill) were planted at the ridge heights of 10, 30, and 50cm in paddy soil on 27 June. Total dry matter accumulation at the 10cm ridge height was severely decreased until the growth stage of R5 as compared to the ridge heights of 30 and 50cm, and this decrement was mainly due to both reduced leaf and stem dry weights. However, seed dry weight was not significantly decreased at the lower ridge height with the increment of harvest index. Cultivar differences were found on seed dry weight, crop growth rate from R1 to R5, and leaf/stem ratio of R5. From the above results, soybean growth responses to excessive soil water in paddy field were different between seed filling stage and late vegetative to early reproductive growth stages.

  • PDF

Response of Soybean Growth to Elevated $CO_{2}$ Conditions

  • Kim Young-Guk;Lee Jae-Eun;Kim Sok-Dong;Shin Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.303-309
    • /
    • 2006
  • The study examined the effects of $CO_2$ enrichment on growth of soybean (Glycine max). Two soybean varieties were used, Taekwang and Cheongja. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the flowering stage. The plants were exposed to the two elevated $CO_2$ levels of 500 and 700 ppm and the ambient level of 350 ppm. Results of the experiment showed that at the second-node trifoliate stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area and dry weight. The elevated $CO_2$ also raised the photosynthetic rate of soybean as compared to the ambient level. From the beginning bloom stage to the full maturity stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area, seed weight and photosynthetic rate. The stomatal conductance and transpiration rate decreased on long days relative to short days of treatment. Through the entire stages, the elevated $CO_2$ increased the water use efficiency of soybean plants because stomatal conductance and transpiration rate decreased at the elevated $CO_2$ levels relative to the ambient level.

Effects of Enhanced Light Transmission Rate During the Early Growth Stage on Plant Growth, Photosynthetic Ability and Disease Incidence of Above Ground in Panax ginseng (생육 초기에 투광량 증가가 인삼생육 및 지상부 병 발생에 미치는 영향)

  • Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Park, Hong Woo;Park, Kee Choon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • This study was performed to investigate the effects of enhanced light transmission on plant growth, photosynthetic ability, and disease tolerance to leaf blight, anthracnose in ginseng (Panax ginseng C. A. Meyer, Araliacease family) during the early growth stage (April to June). The photosynthetic ratio, stomatal conductance, and stem diameter of plants grown under a shade net with 15% light transmission rate showed an increasing trend compared to the control plants (5% light transmission rate) although the growth of the aerial parts were not influenced significantly. Plant height, stem length, and leaf length of treated plants were not significantly different from those of the control plants. Root parameters, such as root length, diameter, and weight of treated plants increased significantly compared to the control. Yield performance ($187.4kg{\cdot}10a^{-1}$) of treated plants was 55.5% higher than that of the control ($150.4kg{\cdot}10a^{-1}$). Additionally, disease severity scores of treated plants were lower than those of the control plants, revealing higher survival rates. To retain high yield potential and enhance the level of disease tolerance in ginseng, we suggest the increase of light transmission rate during the early growth stage.

Rice Plant Growth Characteristics According to Different Seed Germination Length and Damage (볍씨 최아 및 최아 손상정도에 따른 초기생육변화 분석)

  • Choi, Myoung-Goo;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-gun;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.183-189
    • /
    • 2021
  • We checked the emergence rate and early growth characteristics of young rice plants according to the germination length and seed damage ratio in direct seeding. The emergence rate was reduced according to the longer germination length and higher seed damage ratio. The emergence rate was further reduced under high-temperature conditions. The leaf number did not show a significant difference according to germination length and seed damage ratio. However, shoot and root dry weights were reduced according to the germination length and seed damage ratio. The root dry weight was highly correlated with the shoot dry weight. Based on these results, we concluded that a longer germination length and seed damage could induce the loss of nutrients and affect poor root growth, consequently inducing poor emergence and growth in the early growth stage of rice seeds. Therefore, in rice direct seeding, seed conditions of less than 1 mm of germination length should be checked for a sufficiently high standing rate and adequate growth characteristics after seeding.

Germination and Seedling Growth Affected by Seed Specific Gravity

  • Yun, Myoung-Hui;Shin, Jin-Chul;Yang, Woon-Ho;Son, Ji-Young;Kim, Jun-Hwan;Park, Geun-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.434-439
    • /
    • 2008
  • The amount of salt to make seed sorting solution of the specific gravity of 1.13 was reconsidered and determined as 3.8 kg salt in 18 L water, which is lower amount than currently used. Five rice cultivars were examined. Percent germination and seedling emergence were not similar. Seedling emergence rate of Japonica varieties, Nampyungbyeo and Daerypbyeo-1 were 87% and 95% under specific gravity of 1.13, respectively. Seedling emergence rate of Tongil type variety, Dasanbyeo was as high as 67% in specific gravity of 1.06. Seedling emergence rate of waxy rice, Hwasunchalbyeo and Aranghangchalbyeo were examined. Seedling emergence rate was 94% in both cultivars in specific gravity of 1.04. Seedling emergence rate was same in specific gravity of 1.08 which is generally used for selecting seed currently. Early growth (plant height, leaf number, and dry weight) were not significantly different by specific gravity within species. In all cultivars except waxy rice, highest seedling emergence rate was observed in specific gravity of 1.13 which is currently used for selection and decreased as specific gravity is lowed. However, considering total amount of seeds in each group of specific gravity, amount of seed in lower specific gravity group is relatively small and total seedling emergence rate within variety dose not show big difference. However, if seeds with low speicific gravity are produced due to the bad grain filling condition and consequently total seed content of low specific gravity increases, results will be differnt. Reduction in total growth and yield could occur. It will be important to comply with the seed sorting criterion of 1.13 for Japonica, 1.06 for Tongil, and 1.04 for waxy rice variety to ensure the maximum rice growth and yield.