In order to examine the mechanism of asbestos clastogenicity, CHO cells were treated with chrysotile and crocidolite. Crocidolite and chrysotile were able to induce lipid peroxidation in a dose dependent manner. Ultrafiltrate of culture media from CHO cells treated with chrysotile/crocidolite induced sister chromatid exchange in CHO cells. Ultrafiltrate of culture media from CHO cells treated with chrysotile induced chromosome aberration but it was not statistically significant. Simultaneous treatment of 3-Aminobenzamide (3-AB) or cytosine arabinoside (Ara C) with crocidolite had no effect on the frequency of chromosome aberration by crocidolite whetease posttreatment of caffeine significantly increased the chromosomel aberration by crocidolite. This indicated that DNA damage by asbestos took place at late stage of cell cycle. The results suggested that the ultrafiltrate of media contained clastogenic factor (CF) and lipid peroxidation might be involved in the formation of CF.
Crocidolite quality control (QC) sampling created by the wet generation method has been validated by validation tests such as the accuracy, precision, and storage tests. For this study we designed and developed a manufacturing apparatus and standard operating procedure for making these QC samples. The most important step in the procedure of making QC samples was the stage eliminating static electricity in asbestos fibers. This static electricity hampers the fibers clog functioning. In accuracy and precision tests by phase contrast microscopy analysis, the difference between the reference values and the studied values was at maximum 17.8%. This satisfies the AIHA proficiency analytical test criteria for asbestos. We could confirm the nearly even distribution of crocidolite fibers on the membrane filter. Also, there was no loss of fibers in the storage test after the one month.
Journal of Korean Society for Atmospheric Environment
/
v.15
no.6
/
pp.703-712
/
1999
In order to determine the number concentration of asbestos, it is initially necessary to develop a method to identify the type of asbestos. Thus a SEM/EDX was used to obtain both physical and chemical information from known asbestos samples as reference samples. Based on these information, we could make a source profile matrix consisted of a glass fiber and 3 other types of asbestos such as chrysotile, crocidolite, and tremolite. After collinearity test was performed for these sources, we could successfully develop an expert system by C-language to separate and to identify various unknown types of fiber particles. The expert system was perfectly self-verified with original reference data. Then the program was extensively applied to survey indoor and outdoor environment such as a residential area, an elementary school, and underground store, and an auto junkyard. As a result for surveying, a total of 442 individual fibrous particles were well classified into 4 types of particle classes above mentioned; 5.4% of chrysotile, 4.1% of crocidolite, 3.6% of glass fiber, and 86.9% of unknown fibers in terms of number concentration. However, tremolite was not detected in the study sites. All the samples were satisfied with the recommendation level of 0.01 f/cc.
A patient,58 years of age, with suspected 0/l pneumoconiosis since 1993, complained of a dry cough and exertioning dyspnea for 6 months. He had worked in an asbestos company for more than 20 years from 1974. He was subsequently diagnosed with an interstitial lung disease during an annual special health check-up for asbestos workers. h chest X-ray showed an interstitial lung disease and high-resolution computed tomography (HRCT) showed a round opaque asbestosis with chronic hypersensitivity pneumonitis. A pulmonary function test indicated that the patient had a mild restrictive lung disease with FEV1 1.67 litters and 82% FEVl/FVC. The bronchoalveloar larvage fluid included many asbestos bodies, indicating previous exposure to asbestos. Transmission electron microscopy (TEM) using an energy dispersive X-ray analyzer (EDX) revealed many asbestos bodies consisting of mainly crocidolite fibers (6,071$\times$$10^6$fibers/g of dry lung). The patient had an unusually high asbestos content of 6,112$\times$$10^6$ asbestos fibers/9 of dry lung.
Han, Jeong Hee;Kim, Kwang Jin;Chung, Yong Hyun;Lee, Jun Yeon;Lee,, Yong;Chung, Ho Keun;Yu, Il Je
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.11
no.2
/
pp.102-110
/
2001
To establish an accurate asbestos analysis method for workplace samples, chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite asbestos fibers were analyzed for their morphology, atomic content and electron diffraction patterns. The morphology of asbestos fiber was evaluated in $10,000{\times}$ magnification. The atomic contents was analyzed by X-ray analyzer (TEM-EDX). Asbestos fibers were further assessed using electron diffraction (ED) patterns to provide an additional criterion for classifying the asbestos fibers. Twenty asbestos fibers were initially randomly selected for morphological evaluation; based on an aspect ratio (length : diameter = 3:1). Then the fibers were determined for their EDX spectrums and ED patterns. Our results showed that only chrysotile fiber has a hollow tube structure to be distinguished from other asbestos fibers. Although asbestos fibers had similar morphology, they had different EDX spectrums and ED patterns. Our results on the atomic content of asbestos fibers were very similar to those of other researchers, but amosite and crocidolite had a little difference in atomic content compared with the results from other researchers. The difference may be due to the difference in equipment or asbestos sample selection. A study on asbestos samples from biological specimens to establish a criterion for determining occupational asbestos exposed diseases should be done in the near future.
Choi, Jung Keun;Paek, Do Myung;Paik, Nam Won;Hisanaga, Naomi;Sakai, Kiyoshi
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.8
no.2
/
pp.254-263
/
1998
A worker employed in a serpentine mine was found developed mesothelioma as the first case of Korea in 1997. Asbestos was known as a causative agent for mesothelioma. Thus, asbestos contamination in mines could be a big health threat to those workers who were unknowingly exposed. However, there was no report that any minerals found in Korea contained asbestos. This study was carried out to find the presence of any asbestiform fibers in minerals which could be obtained in Korean mines. We examined fifteen minerals from 44 mines which were suspected contaminated with asbestiform fibers. Asbestiform analysis was done with high resolution transmission electron microscope(TEM), with energy dispersive X-ray spectroscope(EDX) and X-ray diffraction(XRD) analyses. Among asbestiform fibers, chrysotile was found in chrysotile, serpentine, talc and pyrophylite specimens from 11 mines. Tremolite was found in tremolite and talc specimens from three mines. Mordenite was found in zeolite specimens from two mines. Wallastonite and sepiolite were found in wallastonite and sepiolite specimens respectively. Crocidolite, antigorite and actinolite were found from talc specimens. But no asbestiform fiber contaminants were found in doromite, vermiculite, limestone, marble, gypsum, kaolin, and clary specimens. Thus, these asbestiform fibers such as such as chrysotile, tremolite, mordenite, crocidolite, antigorite and actinolite could be the responsible agents for the health hazards such as mesothelioma and other cancers.
Asbestos is composed of long thin fibers approximately diameter $0.02\mu\textrm{m}$ and flexibility, strength, electrical, thermal conditions. The most common asbestos are : Chrysotile(white), Crocidolite(Blue), Amosite(Brown). Asbestos was first introduced in the Korea in 1960 and installation of these products continue through the late 1970's and even the early 1980's. Bu-pyung basement stores in Korea were surveyed from September 25 to October 26, 2001. The purpose of this research was to evaluate worker-exposure to asbestos, comparing to the standards and to research notice of inhabitants about asbestos. Fifteen personal samples and six areas were collected using Gillian Air Sampler. Result of this research were as follows. 1. The most of asbestos exposure concentrations keeps to the criterion(OSHA(Occupational Safety and Health Adminisoation), NIOSH) but forty three percent of the Six samples exceeded the EPA (Environmental protection Agency) of 0.01 fibers/cc. 2. All of places compliced to the standards but there is no "Safe level" of asbestos exposure to the people. Especially people who are expose more frequently over a long time are more at risk.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.24
no.2
/
pp.146-151
/
2014
Objectives: Chrysotile is mineralogically distinct from amphiboles, displaying a notably different chemical structure. The thin sheets that form chrysotile fiber lead to the ability of the lung/macrophage system to decompose the chrysotile fibers. This study was performed in order to compare the physicochemical characteristics of Korean asbestos with those of Canadian amphiboles. Materials: An acid solubility test for each test substance was done to compare pH 4.5 and pH 1.2 distilled water. Asbestos fibers which had been placed in acid solutions for five days, five weeks and weeks were analyzed with a transmission electron microscope equipped with an energy dispersive X-ray spectrometer (TEM-EDS). Results: The composition element (Mg) of Korean chrysotile, Korean anthophyllite and Canadian amosite significantly decreased from 5 days and also decreased significantly after 5 weeks and 10 weeks. Only the composition (Mg) of Canadian crocidolite did not change under any conditions. From 5 days, the Mg of Korean chrysotile, Korean anthophyllite and Canadian amosite were significantly lower than before the acid treatment, but there were no changes over time or by the pH of the acid solutions. Particularly after 10 weeks, the composition (Mg) of Korean chrysotile in the pH 1.2 acid solution showed a rapid reduction of 15.86%. Conclusions: Korean chrysotile was very weak in an acid environment, beginning to show significant changes after 5 days. The Mg component rapidly decreased after 10 weeks in the pH 1.2 acid solution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.