• 제목/요약/키워드: critical strain rate

검색결과 161건 처리시간 0.027초

고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향 (Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy)

  • 권용환;조상현;유연철
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

고질소강 오스테나이트계 스테인레스강의 압축변형특성 (Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel)

  • 이종욱;김동수;김병구;이명열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

저신장율 대향류확산화염에서 소화하는 화염디스크로부터 화염구멍으로 천이에 관한 연구 (A Study on Transition of Shrinking Flame Disk to Flame Hole at Low Strain Rate Counterflow Diffusion Flames)

  • 박대근;박정;윤진한;길상인
    • 한국연소학회지
    • /
    • 제13권4호
    • /
    • pp.16-25
    • /
    • 2008
  • Experiments have been conducted to clarify impacts of curtain flow and velocity ratio on low strain rate flame extinction, and to further display transition of shrinking flame disk to flame-hole. Critical mole fractions at flame extinction are examined in terms of velocity ratio, global strain rate, and nitrogen curtain flow rate. It is shown that multi-dimensional effects at low strain rate flames through global strain rate, velocity ratio, and curtain flowrate dominantly contribute to flame extinction and transition of shrinking flame disk to flame hole. Our concerns are particularly focused on the dynamic behavior of an edge flame in shrinking flame disk.

  • PDF

표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성 (A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites)

  • 박수진;오진석
    • 접착 및 계면
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 실험에서는 화학적 표면처리된 탄화규소의 첨가가 탄화규소(SiC)/에폭시 복합재료의 critical strain energy release rate mode II ($G_{IIC}$) 특성에 미치는 영향에 대하여 알아보았으며, 표면처리된 SiC의 표면특성은 산 염기도와 FT-IR을 사용하여 알아보았다. 또한 복합재료의 기계적 계면물성은 $G_{IIC}$를 통하여 알아보았다. 실험결과, 산성 용액으로 표면처리한 SiC (A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC (V-SiC)보다 높으며, $G_{IIC}$의 크랙저항 특성은 A-SiC가 향상되었는데, 이러한 결과는 SiC 충전재와 에폭시 수지간의 분자간 계면결합력의 향상 때문으로 판단된다.

  • PDF

20 nm 두께의 ITO층이 코팅된 ITO/PET Sheet의 저항 및 균열형성 특성 연구 (A Study on the Resistance and Crack Propagation of ITO/PET Sheet with 20 nm Thick ITO Film)

  • 김진열;홍순익
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.86-93
    • /
    • 2009
  • The crack formation and the resistance of ITO film on PET substrate with a thickness of 20 nm were investigated as a function of strain. The onset strain for the increase of resistance increased with increasing strain rate, suggesting the crack initiation is dependent on the strain rate. Electrical resistance increased at the strain of 1.6% at the strain rates below $10^{-4}/sec$ while it increased at ${\sim}2%$ at the strain rates above $10^{-3}/sec$. The critical strain at which the cracks were formed is close to the proportional limit. Upon loading, the initial cracks perpendicular to the tensile axis were observed and propagated the whole sample width with increasing strain. The spacing between horizontal cracks is thought to be determined by the fracture strength and the interfacial strength between ITO and PET. The crack density increased with increasing strain. However, the effect of the strain rate on the crack density was less pronounced in ITO/PET with 20 nm ITO thickness than ITO/PET with 125 nm ITO thickness, the strength of ITO film is thought to increase as the thickness on ITO film decreases. The absence of cracks on ITO film at a strain as close as 1.5% can be attributed to the compressive residual stress of ITO film which was developed during cooling after the coating process. The higher critical strain for the onset of the resistance increase and the crack initiation of ITO/PET with a thinner ITO film (20 nm) can be linked with the higher strength of the thinner ITO film.

저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동 (Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames)

  • 박준성;김현표;박정;김정수;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

저신장율 대향류화염에서 화염소화에 있어서 천이에 대한 연구 (A Study on Transition of Flame Extinction at Low Strain Rate Counterflow Flames)

  • 박대근;박정;김정수;배대석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.197-201
    • /
    • 2009
  • 대향류확산화염에서 수축하는 화염디스크로부터 화염구멍으로 천이에 대한 실험 연구가 수행되었다. 이러한 연구는 버너직경, 전체신장율 그리고 속도비에 따라 묘사된다. 적절히 작은 버너 직경을 사용한 경우 고신장율 화염임에도 반경방향의 전도 열손실의 효과가 기여하는 것을 실험적으로 입증하였다. 그리고 화염소화 모드는 세 가지로 분류되며 특히, 충분히 큰 고신장율 화염의 표면에서 화염구멍 또는 줄무늬로 나타났다. 그리고 버너직경에 따라 화염소화모드를 구분 짓는 임계화염반경이 존재한다.

  • PDF

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Effect of Atmospheric Plasma Treatment of Carbon Fibers on Crack Resistance of Carbon Fibers-reinforced Epoxy Composites

  • Park, Soo-Jin;Oh, Jin-Seok;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.106-110
    • /
    • 2005
  • In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor ($K_{IC}$), and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 $cm^{-1}$ and hydroxyl group (O-H) at 3450 $cm^{-1}$ were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the $O_{1S}/C_{1S}$ ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including $K_{IC}$ (critical stress intensity factor) and $G_{IIC}$ (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.

  • PDF

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF