• Title/Summary/Keyword: critical state line

Search Result 89, Processing Time 0.024 seconds

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (I) : Review and Application (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (I) : 고찰 및 적용)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.61-75
    • /
    • 2003
  • Comprehensive review on the determination of critical state parameters in sandy soils from standard triaxial testing was performed to facilitate the application of critical state soil mechanics to the shear behavior of sandy soils. First, semantic differences in literature were clarified, inferring that critical state should be considered as the ultimate state at large deformation. Second, the characteristics of critical state parameters were discussed, and also the uniqueness of critical state line and the sensitivity of quasi-steady state condition were verified in relation to initial state, fabric, loading condition, and drainage condition. Third, as an example, the critical state soil mechanics was applied to evaluate the post-liquefaction shear strength, i.e. the reliable ultimate shear strength in liquified soils, in terms of critical state parameters.

[ N2H+ ] OBSERVATIONS OF MOLECULAR CLOUD CORES IN TAURUS

  • TATEMATSU KEN'ICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.279-282
    • /
    • 2005
  • We report the millimeter-wave radio observations of molecular cloud cores in Taurus. The observed line is the $N_2H^+$ emission at 93 GHz, which is known to be less affected by molecular depletion. We have compared starless (IRAS-less) cores with star-forming cores. We found that there is no large difference between starless and star-forming cores, in core radius, linewidth, core mass, and radial intensity profile. Our result is in contrast with the result obtained by using a popular molecular line, in which starless cores are larger and less condensed. We suggest that different results mainly come from whether the employed molecular line is affected by depletion or not. We made a virial analysis, and found that both starless and star-forming cores are not far from the critical equilibrium state, in Taurus. Together with the fact that Taurus cores are almost thermally supported, we conclude that starless Taurus cores evolve to star formation without dissipating turbulence. The critical equilibrium state in the virial analysis corresponds to the critical Bonnor-Ebert sphere in the Bonnor-Ebert analysis (Nakano 1998). It is suggested that the initial condition of the molecular cloud cores/globules for star formation is close to the critical equilibrium state/critical Bonnor-Ebert sphere, in the low-mass star forming region.

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (II) : Experiment and Recommendation (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (II) : 실험 및 추천)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.77-92
    • /
    • 2003
  • A set of standard triaxial testing was performed to identify underlying physical processes and inherent limitations in the determination of critical state parameters in sandy soils. The experimental test results showed that the critical state friction angle for a given soil is constant regardless of drainage condition while the critical state line on the e-log p'space is significantly affected by drainage condition mainly because of insufficient strain attained in standard triaxial tests and strain localization effects in udrained tests. It appeared that the best method to determine critical state parameters in laboratory testing is to use homogeneous loose specimens under drained shear condition. In addition, a reference state parameter was suggested to design tests that will avoid dilatancy or strain localization effects in drained tests.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels (초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구)

  • Hwang, Sung-rok;Lee, Hyung Ju
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.

Estimation of critical speed and running performance for swing motion bogie of railway freight car (화물수송용 스윙모션보기의 임계속도와 주행성능 평가)

  • 함영삼;오택열
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2003
  • In this paper the dynamic characteristics of a Swing Motion Bogie, such as a critical speed and a carbody vibration, are investigated in reply to the request of the Meridian Rail Corporation in the United States. Also described are experimental results of the maximum speed, the derailment coefficient, the lateral force, the vertical force, the vibration acceleration and steady state lateral acceleration measured from main line tests.

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

A Research for apportionment ratio of Roof Load in Traditional Wooden Structure's Dori (전통건축물에서 도리의 지붕하중 분담비율에 관한 연구)

  • Hwang, Jong-Kook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.247-250
    • /
    • 2007
  • In korean traditional wooden structure, to know the critical pass of roof load transmission is very important. to know the critical pass of roof load transmission and to find the role of each dori members, used loading block and load cell. The total weight of loading blocks was 5,8880 N and the number of loading blocks were 16, The experimental fran1e has 1/2 scale. From middle-dori to outside-dori, the linearity of line can't guarantee. So, the distribution of roof load in dori is effected by the initial state of dori. In this research, to remove the effect of initial state, initial deformation was allowed by initial setting.

  • PDF

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model (한계상태 Mohr Coulomb 소성 모델을 활용한 콘관입시험의 수치적 모사)

  • Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.37-51
    • /
    • 2019
  • This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.