• Title/Summary/Keyword: critical reynolds number

Search Result 145, Processing Time 0.022 seconds

Parametric Study of Instability in Obstructed Channel Flow (장애물이 부착된 평판 사이 유동의 불안정성에 관한 파라미터적 연구)

  • Hwang, In-Sang;Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.546-553
    • /
    • 2001
  • A Parametric study is numerically carried out for flow fields in a two-dimensional plane channel with thin obstacles(“baffles and blocks”) mounted symmetrically in the vertical direction and periodically in the streamwise direction. The aim of this investigation is to understand how various geometric conditions influence the critical characteristics and pressure drop. A range of BR(the ratio of baffle interval to channel height) between 1 and 5 is considered. Especially when BR is equal to 3, for which the critical Reynolds number turned out to be minimal, we add blocks in the center region in order to study their destabilizing effects on the flows. It is revealed that the critical Reynolds number is further decreased by the presence of the block.

THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW (저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율)

  • An, Sang-Joon;Choi, Jong-Hyeok;Maeng, Joo-Sung;Han, Cheol-Heui
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

ASYMMETRIC VORTEX CHARACTERISTICS AT A CONE UNDER SUPERSONIC HIGH ANGLE OF ATTACK FLOW (초음속 고받음각에서의 원뿔형 물체 주위의 비대칭 와류 특성 연구)

  • Park, M.Y.;Noh, K.H.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.8-13
    • /
    • 2008
  • A supersonic viscous flow over a five-degree half-angle cone is studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions show that the asymmetric flow separation is caused by convective instability. The effects of angle of attacks, Reynolds numbers, and Mach numbers have been investigated and it is found that those factors affect the generation of the side force. The side force has the maximum value at ${\alpha}=22^{\circ}$, while over ${\alpha}=22^{\circ}$, asymmetric vortex becomes transient, which results in the unsteady shedding. At the angle of attack of 22 degrees, the side force increases with Reynolds number and decreases with Mach number. The increase of the side force stops over the critical Reynolds number for the present configuration.

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

Characteristic of Power Consumption for Paddle Impeller in Various Agitated Vessels (여러 가지 교반조에서 Paddle 임펠러의 교반소요동력 특성)

  • Lee, Young Sei;Kato, Yoshihito
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.698-704
    • /
    • 2005
  • Power consumption for paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained for both spherical and cylindrical vessels, where the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel (height equal to its diameter and had the same volume as the spherical vessel). The power consumption well correlated with the experimental results of Nagata, et al. and Hixson-Baum. Also the critical Reynolds numbers was directly related to the transition coefficient $C_{tr}$ characterizing the transition from a laminar to a turbulent flow region in the correlation proposed here.

A Study on Flow Control of Open Cavity with Inclined Rear Walls (경사벽면을 갖는 개방 캐비티의 유동제어에 관한 연구)

  • Cho, Dae-Hwan;Jin, Wan-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1180-1186
    • /
    • 2009
  • This experimental study is about the flow characteristics according to existence and nonexistence of the control rod and location in the flow field where it has the Inclined rear walls in the open cavity. By using the visualization of flow and particle image velocimetry (PIV), we performed about a change and speed of the Reynolds number. Our objective was what part of the control rod gives less effects to the characteristics of flow and how the shear mixing layer moves at what critical point of the Reynolds number. As a result, we differed the location of control rod. So finally, L/H=0.2 was discovered to give less effects to the cavity. The flow of backside of vortex faces the upper side. And we found that this phenomenon shows up more clear when the number of Reynolds increases. This is because of the flow of vortex causes by the condition of y/H=1.0. This phenomenon gets more clear with increasing of number of Reynolds, and critical point of the Reynolds number was $Re=1.0{\times}10^4$ around. If control rod is L/H=0.1, depending on the number of Reynolds ($Re=6.0{\times}10^3$, $Re=8.0{\times}10^3$, $Re=1.0{\times}10^4$, $Re=1.2{\times}10^4$), doubled vortex shows up. As the shear mixing layer of the upper side of cavity increases, the speed of the lower side was very stable.

A Study on Flow Characteristics of Lid-Driven Square Cavity (정방형 벨트구동 캐비티의 흐름특성에 관한 연구)

  • 김진구;조대환;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.430-436
    • /
    • 1997
  • Time-dependent Flow characteristics of a two-dimensional lid-driven square cavity flow of six high Reynolds numbers, $10^4 2{\times}lO^4., 3{\times}l0^4, 5{\times}lO^4, 7.5{\times}lO^4$ and $10^5$ were investigated. A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy was adopted on irregular grid formation. Irregular grid number is $80{\times}80$ and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that at Re= $10^4$, periodic migration of small eddies appearing in corner separation region and its temporal sinusoidal fluctuation are represented. And another critical Reynolds number which shows the commencement of flow randomness emerging from the periodic fluctuation is assumed to be around Re= $1.5{\times}10$. At five higher Reynolds numbers ($2{\times}lO^4., 3{\times}l0^4, 5{\times}lO^4, 7.5{\times}lO^4$ and $10^5$), an organizing structure of four consecutive vortices similar to a Moffat vortex at two lower corners is revealed from time-mean flow patterns.

  • PDF

Flow Characteristics Around the Oscillating Sphere at High Strouhal Number Using Three-Dimensional Vortex Element Method (3차원 입자와법을 이용한 높은 스트롤수로 진동하는 구에 대한 유동장의 수치해석)

  • Lee, Sang-Hwan;Park, Yun-Sub;Cho, Young-Taek;Ahn, Cheol-O;Seo, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.421-428
    • /
    • 2008
  • In this paper, we investigated the flow of an incompressible viscous fluid past a sphere which is oscillated one-dimensionally over flow regimes including laminar flow at Reynolds number of 100, 200 and Strouhal number of up to 5000. In order to analyze flow and estimate critical Strouhal number, we introduce three-dimensional vortex element method. With this method, separation only appears in decreasing velocity region during the high Strouhal numbers. We find out that vorticity distribution around sphere is proportionl to the Strouhal number. And we can decide that low Strouhal number is below 100, high Strouhal number is above 500 from many results. Thus the critical Strouhal number(St) effected to the flow field is expected to be 100

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

Numerical analysis for Bifurcation phenomenon in a Two dimensional wall-driven cavity flow (2차원 벽구동 캐비티유동 분기현상의 수치해석)

  • Cho Ji Ryong;Hong Sang Pyo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-122
    • /
    • 2000
  • 본 연구에서는 2 차원 벽구동 캐비티 유동에 의하여 나타나는 이력효과에 의한 분기(Bifurcation)현상을 전산유체기법을 사용하여 연구하였다. 캐비티는 북쪽과 동쪽벽이 움직일 수 있고, 다른 두 벽은 고정되어있는 구조이다. 실험은 Reynolds 수 100 에서 1000까지 증가시켜가면서 북쪽벽과 동쪽벽을 동시에 가속 시켜 정상상태에 이르게 한 경우와 북쪽벽이 먼저 가속되어 정상해에 이른 후 동쪽벽을 나중에 가속하여 재차 정상상태에 이르게 한 경우를 비교하였다. 그 결과 Reynolds수가 약 200이상부터 벽에 작용하는 항력, 유량함수의 값, 재부착점등이 분기현상을 나타냄을 확인하였다.

  • PDF