• Title/Summary/Keyword: critical population size

Search Result 47, Processing Time 0.024 seconds

The Decision of Critical Population Size for Releasing Micro Data Files (마이크로데이터 제공에 따른 임계모집단 크기 결정)

  • NamKung, Pyong;So, Joung-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.791-801
    • /
    • 2010
  • This study reviews the concept of disclosure, disclosure risks, and uniqueness. The number of uniqueness in the population is of great importance in evaluating the disclosure risk of micro data files. We approach this problem by considering some basic superpopulation models including the Multinomial-Dirichlet model, the Poisson- Gamma model of Bethlehem et al. (1990) and Takemura (1997), and the Modified Multinomial-Dirichlet model. We decided the critical population size of each superpopulation model for four different superpopulation models.

Relationships between Small Mammal Community and Coarse Woody Debris in Forest Ecosystem (산림 생태계에서 소척추동물 군집과 잔목의 관계)

  • Lee, Sang-Don
    • The Korean Journal of Ecology
    • /
    • v.20 no.4
    • /
    • pp.251-258
    • /
    • 1997
  • Few attempts have been made to discover the ecological function of coarse woody debris (CWD) despite its importance to small mammal population. Twenty-five pitfall traps and a hundred live traps were placed in three sites with high amounts of CWD and three sites with low amounts of CWD. Eleven species were caught, and Peromyscus maniculatus was the most abundant (45.6%, n=605). Among 11 speices, abundance of Tamias townsendii and Clethronomys gapperi were higher in sites with high amounts of CWD than in sites with low amounts of CWD. Home range size was larger in breeding season than in non-breeding season indicating mating search. Resident time of Peromyscus maniculatus was longer in sites with high amounts of CWD implying better stability in population. The increasing amount of coarse woody debris (CWD) enhanced the habitat use by small mammals, and animals in high amounts of CWD were more abundant and stable in population fluctuation. This study, therefore, concludes that CWD is a critical habitat element for small mammals in forest ecosystem.

  • PDF

GIS-Based Methods to Assess the Population Distribution Criteria for Undesirable Facilities: The Case of Nuclear Power Plants (비선호 시설의 인구분포 관련 입지기준 평가를 위한 GIS-기반 방법론 연구 -원자력 발전소의 경우-)

  • Lee, Sang-Il;Cho, Daeheon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.755-774
    • /
    • 2012
  • The main objective of the study is to propose GIS-based methods to assess the population distribution criteria for undesirable facilities such as nuclear power plants. First of all, a review of the relevant criteria was conducted for the official documents compiled by such institutions as IAEA (International Atomic Energy Agency), U.S. NRC (Nuclear Regulatory Commission), and some national institutes including the Korea Institute of Nuclear Safety. It is informed from the review that the fundamental principle underlying the various criteria is to maximize the distance between a plant and the nearest population center. It is realized that two interrelated GIS-based techniques need to be devised to put the principle into practice; sophisticated ways of representing population distribution and identifying population centers. A dasymetric areal interpolation is proposed for the former and cell-based and area-based critical density methods are introduced. Grid-based population distributions at various spatial resolutions are created by means of the dasymetric areal interpolation. By applying the critical density methods to the gridded population distribution, some population centers satisfying the population size and density criteria can be identified. These methods were applied to the case of the Gori-1 nuclear power plant and their strengths and limitations were discussed. It was revealed that the assessment results could vary depending upon which method was employed and what values were chosen for various parameters. This study is expected to contribute to foster the applications of methods and techniques developed in geospatial analysis and modeling to the site selection and evaluation.

  • PDF

Factors affecting regional population of Korea using Bayesian quantile regression (베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석)

  • Kim, Minyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.823-835
    • /
    • 2021
  • Identification of factors influencing regional population is critical for establishing government's population policies as well as for improving residents' social, economic and cultural well-being in the region. In this study we analysed the data from 2019 Population Housing Survey in Korea to identify the factors affecting the population size in each of the three regions: Seoul, metropolitan cities, and provincial regions. We applied a Bayesian quantile regression to account for asymmetry and heteroscedasticity of data. The analysis results showed that the effects of factors vary greatly between the three regions of Seoul, metropolitan cities, and provincial regions as well as between sub regions within the same region. These results suggest that population-related variables have very heterogeneous characteristics from region to region and therefore it is important to establish customized population policies that suit regional characteristics rather than uniform population policies that apply to every region.

Genetic diversity evolution in the Mexican Charolais cattle population

  • Rios-Utrera, Angel;Montano-Bermudez, Moises;Vega-Murillo, Vicente Eliezer;Martinez-Velazquez, Guillermo;Baeza-Rodriguez, Juan Jose;Roman-Ponce, Sergio Ivan
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1116-1122
    • /
    • 2021
  • Objective: The aim was to characterize the genetic diversity evolution of the registered Mexican Charolais cattle population by pedigree analysis. Methods: Data consisted of 331,390 pedigree records of animals born from 1934 to 2018. Average complete generation equivalent, generation interval, effective population size (Ne), and effective numbers of founders (fe), ancestors (fa), and founder genomes (Ng) were calculated for seven five-year periods. The inbreeding coefficient was calculated per year of birth, from 1984 to 2018, whereas the gene contribution of the most influential ancestors was calculated for the latter period. Results: Average complete generation equivalent consistently increased across periods, from 4.76, for the first period (1984 through 1988), to 7.86, for the last period (2014 through 2018). The inbreeding coefficient showed a relative steadiness across the last seventeen years, oscillating from 0.0110 to 0.0145. During the last period, the average generation interval for the father-offspring pathways was nearly 1 yr. longer than that of the mother-offspring pathways. The effective population size increased steadily since 1984 (105.0) and until 2013 (237.1), but showed a minor decline from 2013 to 2018 (233.2). The population displayed an increase in the fa since 1984 and until 2008; however, showed a small decrease during the last decade. The effective number of founder genomes increased from 1984 to 2003, but revealed loss of genetic variability during the last fifteen years (from 136.4 to 127.7). The fa:fe ratio suggests that the genetic diversity loss was partially caused by formation of genetic bottlenecks in the pedigree; in addition, the Ng:fa ratio indicates loss of founder alleles due to genetic drift. The most influential ancestor explained 1.8% of the total genetic variability in the progeny born from 2014 to 2018. Conclusion: Inbreeding, Ne, fa, and Ng are rather beyond critical levels; therefore, the current genetic status of the population is not at risk.

Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis- (Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로-)

  • Shin, Hyun-Gon;Park, Heekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

A Study on New Village Planning in the Farming Zone of Saemangeum Reclaimed Area (새만금간척지 신농촌마을 계획수립연구)

  • Shim, Hwan-Hwi;Choi, Soo-Myung;Cho, Joong-Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.4
    • /
    • pp.61-74
    • /
    • 2011
  • Based on the critical review of previous new village planning proposals in Saemangeum Farming Zone, this study tried to derive rational and realistic planning/design criteria for new villages firstly through home-and-abroad case studies analysis, interview works on farmers in two villages located in the existing reclaimed farming areas and influential zone analysis from neighborhood villages in old land. By applying these criteria(population structure, farming size, maximum distance between farmland and home, village site size, number of new villages planned) on Saemangeum Farming Zone, basic new village planning framework was proposed finally.

Sample Size and Statistical Power Calculation in Genetic Association Studies

  • Hong, Eun-Pyo;Park, Ji-Wan
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Spatial Dispersion and Sampling of Adults of Citrus Red Mite, Panonychus citri(McGregor) (Acari: Tetranychidae) in Citrus Orchard in Autumn Season (감귤원에서 가을철 귤응애 성충의 공간분포와 표본조사)

  • 송정흡;김수남;류기중
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Dispersion pattern for adult citrus red mite (CRM), Panonychus citri (McGregor) using by Taylor's power law (TPL) and Iwao's patchiness regression (IPR) was determined to develop a monitoring method on citrus orchards, on Jeju, in Autumn season, during 2001 and 2002.CRM population was sampled by collecting leaves and fruits. The relationships of CRM adults between leaf and fruit were analyzed by different season. The regression equation for CRM adults between leaf (X) and fruit (Y) was ln(Y+1) : 1.029 ln(X+1) ( $r^2$ : 0.80). The density of CRM was higher on fruit than on leaf according to fruit maturing level. TPL provided better description of mean-variance relation-ship for the dispersion indices compared to IPR. Slopes and intercepts of TPL from leaf and fruit samples did not differ between sample units and surveyed years. Fixed-precision levels (D) of a sequential sampling plan were developed using Taylor's power law parameters generated from adults of CRM in leaf sample. Sequential sampling plans for adults of CRM were developed for decision making CRM population level based on the different action threshold levels (2.0,2.5 and 3.0 mites per leaf) with 0.25 precision. The maximum number of trees and required number of trees sampled on fixed sample size plan on 2.0,2.5 and 3.0 thresholds with 0.25 precision level were 19, 16 and 15 and their critical values T$_{critical}$ at were 554,609 and 659, respectively. were 554,609 and 659, respectively.