• Title/Summary/Keyword: critical phenomena

Search Result 401, Processing Time 0.026 seconds

The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel (현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Park, Kyoung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF

Electrical Properties of Conductive Nickel Powder-Epoxy Resin Composites (전도성 니켈분말-에폭시수지 복합체의 전기적 특성)

  • Oh, Dae-Hee;Lim, Duk-Jum;Lee, Jung-Eun;Park, Young-Hee;Oh, Seung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.329-336
    • /
    • 2014
  • The conductive polymer composites have attracted considerable attention in the field of industry due to their electrical properties. To understand electrical properties of the composites, their volume specific resistance was measured. Electrical conductivity results showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in the composites composed of conductive filler and insulating matrix. It was found that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. The purpose of this study was to examine electrical properties of the epoxy resins filled with nickel. The sample was prepared using vehicle such as epoxy resin replenished with nickel powder, and the evaluation on their practical use was performed in order to apply them to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 4.666~13.074 when using nickel powder. Weight loss of the conductive composites took place at $350^{\circ}C{\sim}470^{\circ}C$.

An Experimental Study on the CCFL in Narrow Annular Gaps with Large Diameter (곡률 반경이 큰 환상관 간극에서 CCFL에 대한 실험 연구)

  • Lee, Seung-Jin;Jeong, Ji-Hwan;Park, Rae-Joon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.795-800
    • /
    • 2000
  • A CCFL(Counter Current Flow Limit) test have been performed in narrow annular gaps with large diameter, because it has been confirmed that the CCFL phenomena affected the critical power in hemispherical narrow gap geometries from the SONATA(Simulation Of Naturally Arrested Thermal Attack)-IV (In-Vessel)/VISU(Visualization)-II experiments. The objectives of the CCFL experiments are to investigate the small gap sizes(1, 2mm) effect on CCFL under the large diameter condition and to confirm the findings of the VISU-II study that global dryout in hemispherical narrow gaps was induced by the CCFL. The test section was made of acrylic resin to allow visual observation on the two-phase flow behaviors inside annular gaps. It was observed from visualization that a part of water supplied was accumulated in the upper plenum and a significant increase in the differential pressure across the gap was occurred, which was the definition of the CCFL occurrence in this experimental study. From the experimental results in annular gap with large diameter it can be known that an increase in the differential pressure was not big at small air flow-rates. When the CCFL was occurred, the differential pressure across gaps was increased significantly and a water accumulated in the upper plenum. The occurrence of CCFL was correlated using the Wallis parameter.

  • PDF

A Study on the Lateral Vibretion of a Railway Vehicle Utilizing Statistical Linearization Technique (확률적 선형화를 이용한 철도차량의 횡방향 진동에 관한 연구)

  • 임종순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.742-750
    • /
    • 1986
  • The lateral vibrating motion of a railway vehicle over a certain critical speed is a well known problem in the field of train dynamics. It is known that the train equations of motion are strongly coupled and highly nonlinear with the motion and causing that it is very difficult to solve the equations simultaneously. In this paper, a 8 degree of feedom model of a railway vehicle was suggested to solve the rail vehicle lateral motion. In stead of solving the nonlinear equation simultaneously, statistical linearization technique was adopted to solve those equations. The analysis results from the statistical linearization method were directly compared with those from direct nonlinear equations and found that the linearization technique can be very effective and economical for railroad vehicle analysis. By the way, it was found that the analysis results can analytically explain the intermittent hunting phenomena which has been frequently observed in experiments.

Three-Dimensional Steady-state Rolling Contact Analysis using Finite Element Method (3차원 유한요소법을 이용한 정상상태의 구름접촉해석)

  • Lee, Dong-Hyong;Seo, Jung-Won;Kwon, Seok-Jin;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.565-571
    • /
    • 2011
  • Because most fatigue cracks in wheel and rail take place by rolling contact of wheel and rail in railroad industry, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. This paper presents an approach to steady-state rolling contact problem of three-dimensional contact bodies, with or without tangential force, based on the finite element method. The steady-state conditions are controlled by the applied relative slip and tangential force. The three-dimensional distribution of tangential traction and contact stresses on the contact surface are investigated. Results show that the distribution of tangential traction and contact stresses on the contact surface varies rapidly as a result of the variation of stick-slip region. The tangential traction is very close in form to Carter's distribution.

Detecting of Scuffing Failure Using Acoustic Emission (AE 센서를 이용한 스커핑 손상의 감시)

  • Cho, Yong-Joo;Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.351-356
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers on the contacting surfaces in real time. The FFT(Fast Fourier Transform) analyses of the AE signal are sued to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented.

Stability Analysis of the Slopes (사면의 안정해석에 관한 연구)

  • 강우욱;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-70
    • /
    • 1989
  • The paper compared the Bishop methed to the Fellenius method in the analysis of slope stability. Laboratory model test was carried out in the case of seepage flow considered. The results obtained from this study were summarized as follows; 1. The slice pieces of 10 were enough to analysis the slope stability. 2. The safety factor. by the Fellenius method was lower than the Bishop method by the 96 to 97% in the case of no seepage flow and by the 95 to 96% in the case of seepage flow considered. 3. Besides the parameter of soil and slope, the safety factor of slope was influenced by the height of slope. This phenomena was distinct in the height of height less than 10 meters. 4. In the case of clay, there was no difference in the safety factor of slope between Fellenius and Bishop rnethod. The safety factors of slope with the seepage flow considered were lower than those with no see-page flow. 5. The influence of cohesion on the safety factor was more significant in the Bishop method than in the Fellenius method. 6. The slope failure of model test of A and B soil samples with high permeability coefficient was taken place slightly in vicinity of toe by the concentration of stress and gradually increased 7. Under condition of same slope height, the shapper the slope, the shorter the radius and the center of critical circle appered downward and finally failure of slope occured inside the slope.

  • PDF

Gas cooling for optimization of mold cooling (금형 냉각 최적화를 위한 기체 보조 냉각)

  • Lim, Dong-Wook;Kim, Ji-Hun;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Both injection and injection molding dies have evolved into advanced technology. Product quality is also evolving day after day. Therefore, the conditions of the injection mold and the injection conditions are becoming important. In order to improve the quality of the product, the Hardware part of the mold has developed as an advanced technology, and the Software part has also developed with advanced technology. This study deals with the cooling part, which is part of the hardware. In addition to fluid cooling, which is commonly used in the industry, by using gas cooling identify the phenomena that appear on the surface of the product and the critical point strain of the product to find the optimal cooling. Electronic parts and automobile parts whose surface condition is important, the cooling process is important to such a degree that they are divided with good products and defective products according to the cooling process at the time of injection. By controlling this important cooling and reducing the injection time with additional cooling, the product quality can be increased to the highest production efficiency. In addition, high efficiency can be achieved without additional investment costs. This study was conducted to apply these various advantages in the field.

Full Scale Experiment of Fire Phenomena in case of Reinforced Concrete Structured Apartment Building -Regarding the enclosure fire growth and the structural fire vulnerability findings- (철근콘크리트 구조 공동주택 실물화재 실험 연구 -화재성상 파악 및 취약부위 도출을 중심으로-)

  • 윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 1996
  • In many of the developed countries, there have been continuous offers to observe and understand the fire phenomenon for the establishment of fire safety and the development of fire protection technology. In the past, full scale fire experiments have been conducted for the development of the construction technology and the design methods in order to secure the safety of the buildings and the people as well. This study aims at the statistics concerning the structural vulnerablity parts based on the full scale fire experiment in one of the apartment buildings that represents the average households in Korea, thereby acquring the experimental technology, and the basic data needed for the prediction of enclosure fire phenomenon which is critical for the establishment of evalution methods through simulation, and has also presents secured problems concerning the balcony structure and the window types that requires imediate improvement.

  • PDF

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF