• Title/Summary/Keyword: critical magnetic field

Search Result 358, Processing Time 0.031 seconds

Study on EMI Elimination and PLN Application in ELF Band for Romote Sensing with Electric Potentiometer (전위계차 센서를 이용한 원격센싱을 위한 ELF 대역 EMI 제거 및 PLN 응용 연구)

  • Jang, Jin Soo;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this paper, we propose the methods not only to eliminate ELF(Extremely Low Frequency) EMI(Electro-Magnetic Interference) noice for extending recognition distance, but also to utilize the the PLN for detecting starting instance of a hand gesture using electric potential sensor. First, we measure strength of electric field generated in the smart devices such as TV and phone, and minimize EMI through efficient arrangement of the sensors. Meanwhile, we utilize the 60 Hz PLN to extract the starting point of hand gesture. Thereafter, we eliminate the PLN generated in the smart device and circuit of sensors. And then, we shield the sensors from an electric noise generated from devices. Finally, through analyzing the frequency components according to the gesture of target, we use the low pass filter and the Kalman filter for elimination of remaining electric noise. We analyze and evaluate the proposed ELF-band EMI eliminating method for non-contact remote sensing of the EPS(Electric Potential Sensor). Combined with a detecting technique of gesture starting point, the recognition distance for gestures has been proven to be extended to more than 3m, which is critical for real application.

Charateristics analysis of the joining of YBCO 2G HTS wire (YBCO 2G 선재간 접합 특성 연구)

  • Chang, Ki-Sung;Park, Dong-Keun;Yang, Seong-Eun;Ahn, Min-Cheol;Jo, Dae-Ho;Kim, Hyoun-Kyu;Lee, Hai-Gun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.741-742
    • /
    • 2006
  • This paper deals with an efficient superconducting joint method between 2G high superconducting(HTS) wire, YBCO coated conductor(CC). Recently CC is one of the most promising superconducting wire due to high n-value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter, persistent current system and cable etc. In most HTS applications, superconducting magnet is used, and it is necessary to joint between superconducting wire to fabricate superconducting magnet system. A CC tape used in this research consists of copper stabilizer, silver layer, YBCO layer, buffer and substrate. Direct joint using soldering method was inefficient due to resistance of copper, then copper lamination is removed by chemical etching method to reduce resistance between CC tapes. Jointed tapes were fabricated and tested. Transport current through jointed area and induced voltage were measured to characterize the I-V curve. Resistance between CC wire using chemical etching was compared with resistance of direct jointed tapes using soldering method in this paper.

  • PDF

Suppression of stray electrons in the negative ion accelerator of CRAFT NNBI test facility

  • Yuwen Yang ;Jianglong Wei ;Junwei Xie ;Yuming Gu;Yahong Xie ;Chundong Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.939-946
    • /
    • 2023
  • Comprehensive Research Facility for Fusion Technology (CRAFT) is an integration of different demonstrating or testing facilities, which aim to develop the critical technology or composition system towards the fusion reactor. Due to the importance and challenge of the negative ion based neutral beam injection (NNBI), a NNBI test facility is included in the framework of CRAFT. The initial object of CRAFT NNBI test facility is to obtain a H0 beam power of 2 MW at the energy of 200-400 keV for the pulse duration of 100 s. Inside the negative ion accelerator of NNBI system, the interactions of the negative ions with the background gas and electrodes can generate abundant stray electrons. The stray electrons can be further accelerated and dumped on the electrodes or eject from the accelerator. The stray electrons, including the ejecting electrons, cause the unwanted particle and heat flux onto the electrodes and the inner components of beamline (especially the temperature sensitive cryopump). The suppression of the stray electrons from the CRAFT accelerator is carried out via a series of design and simulation works. The paper focuses the influence of different magnetic field configurations on the stray electrons and the character of the ejecting electrons.

Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors (분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조)

  • Jeon, Young Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • $YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

Superconducting Characteristics of Melt Spun $YBa_2Cu_3Ag_{15}$ and $YbBa_2Cu_3Ag_x$ (x=5, 16 and 53) Microcomposites (융체방사법으로 제작한 $YBa_2Cu_3Ag_{15}$$YbBa_2Cu_3Ag_x$ (x=5, 16 and 53)미세복합재의 초전도 특성)

  • Song, Myeong-Yeop
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.880-887
    • /
    • 1995
  • Melt spun YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{x}$(x=5, 16 and 53) precursor alloy ribbons were oxidized at 263~322$^{\circ}C$, and heat-treated at 872~89$0^{\circ}C$ under 1.0atm oxygen pressure. In addition, about ten ribbons were stacked and coupled by pressing, and then followed the same heat treatment. YB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) or YbB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) phase was formed in both the ribbons and the multilayered specimens. The formed 1-2-3 phases were not texturized in all the ribbons, but slightly texturized in the multilayered specimens. $J_{c}$ was not achieved in all the ribbons at 77K and zero magnetic field. Among the multilayered specimens, YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ showed $J_{c}$ of 260 and 180A/$\textrm{cm}^2$, respectively. YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ are considered to be the appropriate compositions in producing textured superconducting oxides with improved $J_{c}$ by pressing. Onset critical temperature ( $T_{on}$ ) of the multilayered YB $a_2$C $u_3$A $g_{15}$ was 92K while those of YbB $a_2$C $u_3$A $g_{x}$(x=5 , 16 and 53) were 88~90K. , 16 and 53) were 88~90K.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF