• 제목/요약/키워드: critical inclination

검색결과 72건 처리시간 0.021초

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

  • Rahoma, Walid A.;Abd El-Salam, Fawzy A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.285-294
    • /
    • 2014
  • The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

위성궤도의 한계 경사각에 대한 특성 (THE CHARACTERISTICS OF CAITICAL INCLINATION OF SATELLITE ORBIT)

  • 이현주;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.17-27
    • /
    • 1993
  • The orbit characteristics and perturbation effects of an artificial satellite with critical inclination have been studied. The critical inclination problem in artificial satellite theory is treated as Ideal Resonance Problem(IRP). The KITSAT-1 satellite launched by Arian 42P at Guiana in August 11, 1992 has orbital inclination close to the critical value cos-1(1/√5). In that case, there is a singularity in some perturbation terms and perigee of the orbit is fixed because d$\omega$/dt is theoretically equal to zero. But actually the long periodic behaviour in argument of perigee, $\omega$ shows a small oscillation. The causes of the oscillation and the relativistic effect in IRP have been studied and applied to the KITSAT-1. The geo-potential perturbation terms which are seperated inclination terms have been obtained using Algebraic manipulation. Also luni-solar disturbing funtion based on the relative position of the sun, moon, and satellite has been obtained. Phase portraits are used to depict the change of eccentricity and grgument of perigee. The variations of each orbital elements have been obtained in case of the KITSAT-1.

  • PDF

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구 (An Experimental Study on the Convective Boiling in Inclined Tubes)

  • 이홍욱;이준식;박군철
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Perturbation Study of the KISAT-1 Satellite with Critical Inclination

  • Yi, Hyun-Joo;Park, Kyu-Hong-
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1992년도 한국우주과학회보 제1권1호
    • /
    • pp.11-11
    • /
    • 1992
  • The most celebrated problem in artificial satellite theory is undoubtedly the critical inclination problem. The KITSAT-1 satellite launched by Arian 42P from Guiana in August 11, 1992 has orbital inclination close to the critical value cos-1(1/rs). In that case, there is a singularity in some perturbation terms and therefore perigee will be fixed because do/dt is equals to zero. But actually the long periodic behaviour in argument of perigee, u is affected by luni-solar gravity andrelativistic effect, etc. Luni-solar gravity induces periodic perturbations in allorbital elements except the semi-major axis, and secular variations in 0, u and M.We have obtained nodal rate and inclination variations in case of the KITSAT-1.In this paper, we will also show the geopotential perturbations in 0, M of the Satellite in CIUding J2, J3, J4, J22 terms.

  • PDF

축소모델을 이용한 차륜답면형상 답면구배에 따른 안정성 평가 (Stability Evaluation of the Railway Bogie According to the Tread Inclination of Wheel Profile Using Scale Model)

  • 허현무;유원희;김남포;박태원
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1099-1107
    • /
    • 2009
  • Numerical simulation and experimental study to evaluate the critical speed of the railway bogie according to the tread inclination of wheel profile were conducted using 1/5 scale model. It has been shown that the results of the critical speed analysis for the scale bogie model is very close to the test results using scale bogie model and the critical speed is decreased in proportion to the increase of equivalent conicity of wheel profile. Results of this study show that the scale model could be applied to research area relating to vehicle stability as an alternative to overcome the experimental problems caused by full scale test on the roller rig.

Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.337-342
    • /
    • 1996
  • The pool-boiling critical heat flux (CHF) of water on small flat plates has been experimentally investigated focusing on the effects of the inclination angle and size of the heated surface under near atmospheric pressure. The second-phase experiment was accomplished to find out the general CHF behavior for over-all inclination angles from -90$^{\circ}$ to 90$^{\circ}$using two plate-type test sections (30$\times$150 mm and 40$\times$150 mm) submerged in a slightly subcooled water pool. Test results generally confirm the first-phase findings and show little effect of inclination angle for inclined upward-facing cases. CHF position moves to lower position with the increase of the heater characteristic size and inclination angle(from -30$^{\circ}$to 60$^{\circ}$).

  • PDF

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles

  • Tanjung, Elvira F.;Alunda, Bernard O.;Lee, Yong Joong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1068-1078
    • /
    • 2018
  • Experiments were performed to investigate bubble behaviors and pool boiling Critical Heat Flux (CHF) on a thin flat rectangular copper heater fabricated on Printed Circuit Board (PCB), at various inclination angles. The surface inclination angles were $0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $180^{\circ}$. Results showed the Onset of Nucleate Boiling (ONB) heat flux increased with increasing heater orientation from $0^{\circ}$ to $90^{\circ}$, while early ONB occurred when the heater faced downwards ($135^{\circ}$ and $180^{\circ}$). The nucleate boiling was observed to be unstable at low heat flux (1-21% of CHF) and changed into typical boiling when the heat flux was above 21% of CHF. The result shows the CHF decreased with increasing heater orientation from $0^{\circ}$ to $180^{\circ}$. In addition, the bubble departure diameter at the heater facing upwards ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) was more prominent compared to that of the heater facing downward ($135^{\circ}$). The nucleation site density also observed increased with increasing heat flux. Moreover, the departed bubbles with larger size were observed to require a longer time to re-heat and activate new nucleation sites. These results proved that the ONB, CHF, and bubble dynamics were strongly dependent on the heater surface orientation.