• Title/Summary/Keyword: critical fluid velocity

Search Result 150, Processing Time 0.032 seconds

Numerical Study of Density-stratified Flow Past Two 3D Hills - Aligned in Tandem - (두 개의 3차원 지형물 주위의 성층 유동 해석 - 주 유동방향으로 정렬된 경우 -)

  • Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1218-1227
    • /
    • 2006
  • In this paper a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported.

Flow-induced Vibration Analysis of Bridge Girder Section (교량 구조물의 유체유발 진동해석)

  • Park, Seong-Jong;Kwon, Hyuk-Jun;Lee, In;Han, Jae-Heung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.402-409
    • /
    • 2004
  • Numerical analysis of static and dynamic wind effects on civil engineering structures was performed. Long-span suspension bridges are flexible structures that are highly sensitive to the action of the wind. Aerodynamic effect often becomes a governing factor in the design process of bridges and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Buffeting caused by turbulence results in structural fatigue, which could lead to the failure of a bridge. Navier-Stokes equations are used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes.

Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder (내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구)

  • Bae, Kang-Youl;Kim, Hyoung-Bum;Lee, Sang-Hyuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

Experimental Study on the Secondary Flow Characteristics of a Supercritical Carbon Dioxide Flow in a Gas Cooling Process Within a Square Duct (정사각 덕트 초임계 상태 이산화탄소 가스 냉각과정 중 2차 유동 특성 측정 연구)

  • Han, Seong-Ho;Seo, Jung-Sik;Kim, Young-Chan;Kim, Min-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The carbon dioxide properties change sharply near the critical or pseudo-critical point in the heat transfer processes. The reduction in turbulent, convective heat transfer parameters observed in some supercritical data and in experiments with common gases can be due to property variation, acceleration, buoyancy or combinations of these phenomena, depending on the conditions of the applications. In this study, the measurement for the secondary flow driven by buoyancy was carried out on the supercritical carbon dioxide turbulent flows in the different boundary condition with the constant mass flow rate. The available measuring techniques were used to clarify the behaviour of any supercritical fluid. Laser Doppler Velocimeter (LDV) and a special device was used to measure the secondary velocity and turbulent characteristics of the supercritical flows.

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

A Study on the Flow Behavior of Magnetic Fluids in a Circular Pipe with a Vertical Magnetic Field (수직자장하에서 원관내 자성유체의 거동에 관한 연구)

  • Park, Joung-Woo;Ryu, Shin-Oh;Seo, Lee-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, vorticity, internal angular momentum and induced magnetization as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

A Study on the Rheology Characteristics of Magnetic Fluids in a Circular Pipe (원관내 자성유체의 Rheology 특성에 관한 연구)

  • Jeon, Eon-Chan;Park, Joung-Woo;Kim, Tae-Ho;Kim, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, apparent viscosity as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

  • PDF

Flow Behavior in a Rectangular Tunnel Opened and Closed at Both Sides Using CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.368-377
    • /
    • 2012
  • Most tunnel simulations have been focused on the thermal field and the critical velocity for suppression of hot back-layering flow in case of fire and on the characteristics of a tunnel fire in terms of the flame propagation and the toxic gas generation. In this paper, a comparative study of the flow characteristics of polluted air with no heat source in a tunnel model opened and closed at both end sides is implemented into a recognized CFD simulation code. The model is used to investigate the flow characteristics depending on the three different Reynolds numbers of 640, 1270 and 2120, which have been chosen by the flow velocities of 0.3, 0.6 and 1.0 m/s through the inlet. The results of this study have shown that the CFD predictive and experimental approaches are available in qualitatively studying the correlation of flow behaviors for a better tunnel design.

Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions (증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF