• 제목/요약/키워드: critical factor

검색결과 3,031건 처리시간 0.031초

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

실험계획법을 이용한 주축 형상 설계에 관한 연구 (A Study on Spindle Shape Design using Design of Experiments)

  • 선재호;이춘만
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.120-127
    • /
    • 2009
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in vibration of spindle. This paper concerns the improvement of spindle design using design of experiments. To improve the design of critical speed and weight of spindle, the experiments using central composite method have been carried out. The targets are critical speed and weight of spindle. For optimization of critical speed and weight and optimization of only critical speed by operation of all area search through response optimizer, the result of analysis has improved design of each factor. Finite element analyses are performed by using the commercial codes ARMD, CATIA V5 and ANSYS workbench. From the results, it has been shown that the proposed method is effective for modification of spindle design to improve critical speed and weight.

베이커리 기업의 경쟁력 평가모델개발 (A Study on Evaluating the Competitiveness of Bakery Corporations)

  • 이재진
    • 한국조리학회지
    • /
    • 제12권1호
    • /
    • pp.203-215
    • /
    • 2006
  • This study tried to develop an estimation model on the competitive power as a method to understand a practical index on the competitive power in order to improve the competitiveness of domestic bakery corporations and look into their internal structure. The results of the practical analysis are summarized below. First, eight critical success factors, which are considered important in competitive power in bakery corporations, were derived from preceding studies and an expert meeting. Second, this study performed a questionnaire with eight derived factors for bakery managers and employees. Seven critical success factors suitable for bakery corporations were chosen through validity and reliability tests. Third, this study performed an AHP(Analytic Hierarchy Process) analysis in order to establish preference according to each factor and weight. The importance of factor concerned with the competitive power of bakery corporations according to the result of weight analysis appeared in order of customer resources, personnel resources, corporate images, material resources and qualities, technical capability, financial factors and pliability(time).

  • PDF

The Expression of Galectin-3, a Beta-Galactoside Binding Protein, in Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.105-109
    • /
    • 2005
  • Background: Dendritic cells (DCs) are the most potent APCs (antigen-presenting cells) and playa critical role in immune responses. Galectin-3 is a biological lectin with a beta-galactoside binding affinity. Recently, proteomic analysis revealed the presence of galectin-3 in the exosome of mature DCs. However, the expression and function of galectin-3 in DCs remains unclear yet. Methods: We used bone marrow-derived DCs of mouse and showed the expression of galectin-3 in DCs by using flow cytometry analysis and Western blot analysis. Results: Galectin-3 was determined as single band of 35 kDa in Western blot analysis. Flow cytometry analysis showed the major growth factor for DCs, granulocyte-macrophage colony stimulating factor (GM-CSF) and maturing agents, anti-CD40 monoclonal antibody (mAb) and lipopolysaccharide (LPS) consistently increased the intracellular expression of galectin-3 in DCs compared to medium alone. In addition, DCs treated with maturing agents did marginally express galectin-3 on their surface. Conclusion: This study suggests that galectin-3 in DCs may be regulated by critical factors for DC function.

고로슬래그 미분말을 사용한 고유동콘크리트의 내동해성에 관한 실험적 연구 (An Experimental Study on the Frost Resistance of High-Flowing Concrete Using Granulated Blast-Furnace Slag)

  • 김무한;권영진;강석표
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.43-51
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-flowing concrete using finely ground granulated blast-furnace slag with experimental parameters, such as type of binder, type of superplasticizer and method of curing. The resistance to freezing and thawing of high-flowing concrete by type of binder and superplasticizer is presented differently. Though the frost resistance of high-flowing concrete is satisfactory under standard condition, it is required that high-flowing concrete has entrained air like plain concrete. Because the critical spacing factor, being capacity of frost resistance, of high-flowing concrete is longer that of plain concrete, the frost resistance of high-flowing concrete, using finely ground granulated furnace blast slag, is superior to that of plain concrete.

알루미늄 합금의 접착구조물에 대한 접착강도의 평가방법 (Evaluation Method of Bonded Strength in Adhesively Bonded Structures of the Aluminum Alloys)

  • 정남용
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.35-44
    • /
    • 1999
  • In a view point of earth environmental protection and social requirement, adhesively bonded structures of aluminum alloys have become to be employed for the purpose of decreasing fuel ratio by weight reduction and to improve performance in various engineering fields such as aircrafts, automobiles, rolling stocks and so on. In spite of such wide applications in adhesively bonded structures of aluminum alloys, the quantitative fracture criterion and evolution method of its bonded strength have not been established yet. The objective of this paper is to establish fracture criterion considering stress singularity at interface edges in adhesively bonded structures of aluminum alloys. Through the analyses of boundary element method and static fracture experiments with three different types of specimens in the adhesively bonded joints of aluminum alloys, its fracture criterion was proposed and discussed about strength evolution of adhesively bonded structures.

  • PDF

지식 전환을 통한 기업 국제화 전략 -현대자동차 사례를 중심으로- (Knowledge translation in internationalization of the firms)

  • 최순권;정진철;백윤정
    • 지식경영연구
    • /
    • 제3권2호
    • /
    • pp.71-84
    • /
    • 2002
  • Global firms have to acquire various kinds of knowledge from worldwide markets and use it strategically in local markets. Especially, the ability to learn competitive advantage of an industry leader or competing firm is a critical factor in a firm's competitiveness. The concept of knowledge transfer has been used to explain these phenomena. However, with the broadening concept of knowledge and increasing importance of interaction between firms, the perspective of knowledge transfer has reached its limits. In this study we will conceptualize the new concept of 'knowledge translation', and analyze the globalization case of Hyundai Motor Co. to improve the validity and usefulness of this perspective. The results show that knowledge translation is a critical factor of success in a firm's globalization and efficient management of the knowledge translation process enhances a firm's global competitiveness.

  • PDF

SC-OPF의 민감도 계수를 이용한 발전기 기동.정지계획 (The Unit Commitment Using the Sensitivity Factor of Security Constrained Optimal Power Flow)

  • 김광모;정구형;한석만;김발호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.416-417
    • /
    • 2006
  • The recent movement to deregulated and competitive electricity market requires new concepts against existing central dispatch in the system operation and planning. As power systems tend to be operated more closely to their ultimate ratings, the role of SCOPF(Security Constrained Optimal Power Flow) is changed. This paper deals with the proper Unit Commitment condition changed according to the conditions or configuration of power system. This goal of is paper is to obtain proper security and Optimal UC condition through the efficient usage of the sensitivity Factor against critical contingencies. The proposed mechanism has been tested on a sample system and results show more secure conditions against critical contingencies.

  • PDF

지지력 계수 $N_{\gamma}$의 수치적 산정법 (Numerical Computation of Bearing Capacity Factor $N_{\gamma}$)

  • 김원철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.565-573
    • /
    • 2004
  • This study is to present explicit analytical expressions for calculating bearing capacity factor $N_{\gamma}$, to provide results of the numerical computation instead of the graphical method. In this study, $N_{\gamma}$ is proposed in the critical failure surface on assumption that the center of log spiral in the radial shear zone can be located at the any points of around footing. The critical failure surface is one which yields minimum passive pressure $P_{\gamma}$ on the radial shear zone from the family of log spirals accoding to change of the center of log spiral. This study adoptes Terzaghi's bearing capacity principle(e.g., Prandtl's mechanism, limit equilibrium equation, superposition principle) but the soil wedge in an elastic zone makes angle $45^{\circ}+{\phi}/2$ with the horizontal and the location of the log spiral's center.

  • PDF

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.