• Title/Summary/Keyword: critical displacement

Search Result 502, Processing Time 0.029 seconds

APPLICATION OF WIRELESS INCLINOMETER FOR DISPLACEMENT MEASUREMENT OF TEMPORARY EARTH RETAINING PILE

  • Chi Hun In;Hong Chul Rhim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.218-223
    • /
    • 2009
  • During the process of excavation for substructures of buildings, precise and constant measurements of retaining wall displacement is crucial for construction to be complete and safe. Currently an inclinometer is used to measure displacement around the perimeter of an excavation site. The existing inclinometer system requires an instrument to be placed inside pre-bored holes for each measurement with an typical interval of two weeks. This makes it difficult to obtain continuous displacement data, especially during a critical time such as rainy season in summer. Also, the existing inclinometer is placed at certain distance away from the retaining wall system itself. Thus, exact measurement of retaining wall movement is compromised because of the distance between the retaining wall and the inclinometer. This paper presents the development of wireless inclinometer system for the displacement measurement of retaining walls by being attached directly to the retaining wall. The result of the application of the developed systems are provided with advanced ubiquitous sensor network (USN) system features. The USN technique incorporated into the system enables users to monitor movement data from wherever possible and convenient such as construction manager's office on site or any other places connected through internet. The research work presented in this paper will provide a basis to save construction time and cost by preventing safe-related unexpected delay of construction due to the failure or collapse of retaining walls.

  • PDF

Location determining method of critical sliding surface of fillings in a karst cave of tunnel

  • Lin, P.;Li, S.C.;Xu, Z.H.;Huang, X.;Pang, D.D.;Wang, X.T.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.415-421
    • /
    • 2018
  • A location determining method is proposed for critical sliding surface in the stability analysis of the filling materials in karst caves. First, a preliminary location of the sliding surface is determined based on simulation results which includes displacement contour and plastic zone. The sliding surface will locate on the bottom contact interface when the friction angle is relative small. However, a weakened contact interface always becomes the critical sliding surface no matter what the friction angle is. Then when the friction angle becomes larger, the critical sliding surface inside fillings can be determined by a parabola, the coefficient of which increases linearly with the friction angle under the same cohesion. Finally, the critical sliding surface approximately remains unchanged with friction angle. The influence of cohesion is similar to that of friction angle. Although affected by shape, size or position of the karst cave, the critical sliding surface mainly depends on both friction angle and cohesion. Thus, this method is always useful in determining the critical sliding surface.

Seismic Landslide Hazard Maps Based on Factor of Safety and Critical Displacements of Slope (사면의 안전율과 임계변위에 의한 지진 재해 위험지도의 비교)

  • 정의송;조성원;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.509-516
    • /
    • 2001
  • As the first step for the application of seismic landslide hazard maps to domestic cases, two types of hazard maps on Ul-joo from pseudostatic analysis and Newmark sliding block analysis are constructed and comllared. Arcview, the GIS program and the 1:5,000 digital maps of the test-site are used for the construction of hazard maps and tile parameters for the analyses are determined by seismic survey and laboratory tests. The results from the pseudostatic analysis have more conservative values of lower critical slope angles, although the results from the two different analyses have similar tendencies. In detail, with increasing the peak ground acceleration, the difference between the two analyses in the critical slope angle increases, while the difference decreases with increasing the maximum soil depth.

  • PDF

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

Roles of displacement speed of premixed flame embedded in isotropic turbulent decaying flow (직접수치해법을 이용한 난류 예혼합 화염전파속도 연구)

  • Han, In-Suk;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.177-186
    • /
    • 2006
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensionaldirect numerical simulations (DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

A Study on the Stress and Displacement Behaviors of an aluminum Tube in OPC Toner Cartridge (토너카트리지 OPC 드럼용 Al 튜브의 응력 및 변형거동에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.89-94
    • /
    • 2007
  • The stress and displacement behavior analysis of an aluminum tube for an organic photo conductor drum has been presented using a finite element analysis technique by non-linear FEM program. The maximum displacement in the radial direction of OPC drum may directly affect to the quality of printed matter. Thus, the deformed profile of the aluminum tubes should be limited depending on the toner powder size and the contact rolling forces between an OPC drum and a paper. This paper recommends the critical loading of 400 Pa for the provided toner size, $8{\mu}m$ for excellent printed matters and long life of the toner cartridge.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Roles of Displacement Speed of Premixed Flame Embedded in Isotropic Turbulent Decaying Flow (직접수치해법을 이용한 난류 예혼합 화염전파속도 연구)

  • Han, In-Suk;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.10-19
    • /
    • 2007
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensional direct numerical simulations(DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

Study on Application of Criteria of Lateral Flow in Soft Soils (측방유동 판정기준의 적용성 연구)

  • Chae, Young-Soo;Moon, Han-Joong;Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.219-223
    • /
    • 2006
  • In this paper, the criteria of the lateral displacement in soft soil due to embankment were evaluated. The lateral displacement was measured at a pier structure in a new harbor construction site, and the measurement was compared with the criteria. The results by the measurement such as the critical pressure causing lateral movement in terms of undrained strength, the lateral movement index by Japan Highway Co., the lateral displacement index by Japan Construction Ministry, the modified index by Korean Highway Co. were estimated to be lower than the respective index values.

  • PDF

Study on the Limit Slenderness of a Double Outrigger System (이중 아웃리거 구조 시스템의 한계 세장비에 대한 연구)

  • Yang, Jae-Kwang;Kang, Ho-Geun;Park, Sung-soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • Due to the recent overpopulation of urban cities, land shortage and soaring land prices have caused an increase in the demand for high-rise buildings. To build buildings on a limited land, the size of the building is important. Displacement control by horizontal loads in a skyscraper is critical to securing stability and usability of structures. Several systems have been proposed for efficient horizontal displacement control, and so far the study continues. Among them, the Outrigger System is a representative of the typical horizontal load resistance system. Although studies have been conducted so far to locate the optimal position of the outrigger, studies of the slenderness ratio of the buildings are still insufficient. Based on the Outrigger-Optimized Position equation, this study induces the calculation of the displacement of the outrigger installation building according to the slenderness ratio.