• 제목/요약/키워드: critical displacement

검색결과 502건 처리시간 0.021초

지반의 한계변형률을 이용한 터널수치해석 및 현장 적용성 연구 (A Study on Numerical Analyses and Field Application for Tunneling Using the Critical Strain in the Ground)

  • 박시현
    • 지질공학
    • /
    • 제18권3호
    • /
    • pp.339-347
    • /
    • 2008
  • 본 연구는 지반의 한계변형률을 활용하여 터널의 정량적 안정성 평가를 수행한 것이다. 한계변형률은 지반재료에 대한 새로운 역학적 물성치의 하나이다. 한계변형률 개념은 터널굴착 현장에서 계측된 변위정보와 함께 굴착지반의 변형에 대한 한계치 설정에 활용될 수 있다. 이러한 목적을 위해서 본 연구에서는 한계변형률 개념을 터널 안정성 평가에 활용한 것이다. 먼저, 수치해석 프로그램을 이용하여 터널굴착시 발생한 변위를 역해석 기법에 의해 지반변형률로 산정한 후, 이를 한계변형률 개념에 의해 터널 안정성을 평가하였다. 이어서, 터널시공현장에서 계측된 변위정보를 활용하여 실증적으로 한계변형률 관점에서 터널안정성 평가를 수행하였다. 본 연구를 통해 한계변형률 개념에 의해 터널의 안정성을 정량적으로 평가하는 것이 가능한 것을 확인하였다.

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가 (Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel)

    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Relationship between Class III malocclusion and hyoid bone displacement during swallowing: a cine-magnetic resonance imaging study

  • Gokce, Sila Mermut;Gokce, Hasan Suat;Gorgulu, Serkan;Karacay, Seniz;Akca, Eralp;Olmez, Huseyin
    • 대한치과교정학회지
    • /
    • 제42권4호
    • /
    • pp.190-200
    • /
    • 2012
  • Objective: The displacement of the hyoid bone (HB) is a critical biomechanical component of the swallowing function. The aim of this study was to evaluate the swallowing-induced vertical and horizontal displacements of the HB in subjects with 2 different magnitudes of skeletal Class III malocclusion, by means of real-time, balanced turbo-field-echo (B-TFE) cine-magnetic resonance imaging. Methods: The study population comprised 19 patients with mild skeletal Class III malocclusion, 16 with severe skeletal Class III malocclusion, and 20 with a skeletal Class I relationship. Before the commencement of the study, all subjects underwent cephalometric analysis to identify the nature of skeletal malformations. B-TFE images were obtained for the 4 consecutive stages of deglutition as each patient swallowed 10 mL of water, and the vertical and horizontal displacements of the HB were measured at each stage. Results: At all stages of swallowing, the vertical position of the HB in the severe Class III malocclusion group was significantly lower than those in the mild Class III and Class I malocclusion groups. Similarly, the horizontal displacement of the HB was found to be significantly associated with the severity of malocclusion, i.e., the degree of Class III malocclusion, while the amount of anterior displacement of the HB decreased with an increase in the severity of the Class III deformity. Conclusions: Our findings indicate the existence of a relationship between the magnitude of Class III malocclusion and HB displacement during swallowing.

Creep Crack Growth Properties of Low Pressure Turbine Rotor Steel under Constant Load and Ct

  • Jeong, Soon-Uk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.95-101
    • /
    • 2002
  • The propagation rate(da/dt) prediction parameter and the microstructure properties of creep crack in domestic 3.3NiCrMov steel were investigated at 550$\^{C}$ by using 0.5" CT specimen under constant load(4090N) and constant Ct(300∼4000N/mhr) condition that was maintained during crack growth of 1mm distance. C* usually increased with crack length though load was reduced in order to maintain constant Ct value as crack growth and considerably showed the scatter band, but Ct depended on load line displacement rate and represented a good relation with da/dt. At constant toad and Ct region, crack growth slope was 0.900 and 0.844 each, in the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip was increased as Ct value increase to the critical value, and after that value FCA decreased. The average diameter ditribution of cavity in FCA showed the greatest value about 1.5 ㎛ when Ct=2000N/mhr. The increasing of Ct in FCA view point enlarged the size of damage area and the size reached to maximum 800 ㎛ when Ct=2000N/mhr.

Experimental and numerical verification of hydraulic displacement amplification damping system

  • Chung, Tracy Sau-Kwai;Lam, Eddie Siu-Shu;Wu, Bo;Xu, You-Lin
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Hong Kong is now recognized as an area of moderate seismic hazard, but most of the buildings have been designed with no seismic provision. It is of great significance to develop effective and practical measures to retrofit existing buildings against moderate seismic attacks. Researches show that beam-column joints are critical structural elements to be retrofitted for seismic resistance for reinforced concrete frame structures. This paper explores the possibility of using a Hydraulic Displacement Amplification Damping System (HDADS), which can be easily installed at the exterior of beam-column joints, to prevent structural damage against moderate seismic attacks. A series of shaking table tests were carried out with a 1/3 prototype steel frame have been carried out to assess the performance of the HDADS. A Numerical model representing the HDADS is developed. It is also used in numerical simulation of the shaking table tests. The numerical model of the HDADS and the numerical simulation of the shaking table tests are verified by experimental results.

Can irregular bridges designed as per the Indian standards achieve seismic regularity?

  • Thomas, Abey E.;Somasundaran, T.P.;Sajith, A.S.
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.15-28
    • /
    • 2017
  • One of the major developments in seismic design over the past few decades is the increased emphasis for limit states design now generally termed as Performance Based Engineering. Performance Based Seismic Design (PBSD) uses Displacement Based Design (DBD) methodology wherein structures are designed for a target level of displacement rather than Force Based Design (FBD) methodology where force or strength aspect is being used. Indian codes still follow FBD methodology compared to other modern codes like CalTrans, which follow DBD methodology. Hence in the present study, a detailed review of the two most common design methodologies i.e., FBD and DBD is presented. A critical evaluation of both these methodologies by comparing the seismic performance of bridge models designed using them highlight the importance of adopting DBD techniques in Indian Standards also. The inherent discrepancy associated with FBD in achieving 'seismic regularity' is highlighted by assessing the seismic performance of bridges with varied relative height ratios. The study also encompasses a brief comparison of the seismic design and detailing provisions of IRC 112 (2011), IRC 21 (2000), AASHTO LRFD (2012) and CalTrans (2013) to evaluate the discrepancies on the same in the Indian Standards. Based on the seismic performance evaluation and literature review a need for increasing the minimum longitudinal reinforcement percentage stipulated by IRC 112 (2011) for bridge columns is found necessary.

Change of Glycosaminoglycan Distribution and Collagen Fibers Arrangement on Temporomandibular Joint Following Anterior Disc Displacement of the Rabbits

  • Kim, Uk-Kyu;Chung, In-Kyo;Kim, Kyu-Cheon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권3호
    • /
    • pp.173-179
    • /
    • 2012
  • Purpose: This study was to determine the effects of surgical induction of anterior disc displacement (ADD) on the distribution of glycosaminoglycan (GAG) and collagen fiber arrangement in the rabbit temporomandibular joint (TMJ) tissues including articular cartilage of condyle, disc, retrodiscal tissue, and articular eminence. Methods: We used van Gieson staining and Alcian blue critical electrolyte concentration (CEC) method to observe change of collagen fibers on disc and to measure GAG up to 10 weeks in TMJ tissues after surgical induction of ADD on 25 rabbits. Results: CEC measurements for GAG showed 0.3 M, 0.4 M, 0.6 M, and 0.8 M at 1 week, 2 weeks, 3, 4, and 8 weeks, 10 weeks, respectively. This result indicated that GAGs shifted to highly sulphated ones as time passed. Disruption of collagen fiber arrangement in the disk occurred at 10 days and aggravated at 3 weeks. Conclusion: Our study showed degenerative osteoarthritis changes in rabbit TMJ following surgical induction of ADD up to 10-week period.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.