• Title/Summary/Keyword: critical crack length

Search Result 103, Processing Time 0.025 seconds

A Study on Mode II Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드II 층간파괴인성치에 관한 연구)

  • 김형진;박명일;곽대원;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.42-47
    • /
    • 2002
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode II interlaminar fracture toughness of hybrid composite by using end notched flexure(ENF) specimen. In the range of loading rate 0.5~2mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate( $G_{IIc}$). there is no dependence of the interlaminar fracture energy upon the specimen width over the specimen widths examined. The value of $G_{IIc}$ for variation of initial crack length are nearly similiar values when material properties are CF/CF and GF/GF, however, the value of $G_{IIc}$ are highest with the increasing intial crack length at CF/GF. The values of $G_{IIc}$ for variation material properties are higher with the increasing moulding pressure when moulding pressures are 307, 431, 585㎪. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.e CF/GF.

Fatigue Crack Propagation Behaviors on Tensile and Compression Residual Stresses in Weld Zone (용접부의 인장 및 압축잔류응력에 관한 피로균열 전파거동)

  • 이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.13-21
    • /
    • 1994
  • Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.

  • PDF

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

Creep Crack Growth Properties of Rotor Steel under Constant Load and $C_t$ Condition (일정하중 및 일정$C_t$에서 로터강의 크리프 균열전파특성)

  • Jeong, Soon-Uk;Lee, Hun-Sik;Kim, Young-Dae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.501-506
    • /
    • 2001
  • The creep crack growth properties in 3.5NiCrMoV steel were investigated at $550^{\circ}C$ by using CT specimen under constant $C_t$ condition that was held during crack growth of 1mm distance. $C_t$ lely on load line displacement rate and $C^*$ usually increase with crack length though load is reduced in order to maintain constant $C_t$ value as crack growth. Fully coalesced area(FCA) ahead of crack tip tend to increase as $C_t$ increase to the critical value, and after that value FCA decrease. For the tertiary creep stage of crack growth test, the most of displacement is due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of $C_t$. At constant load and $C_t$ region, crack growth slope was 0.900 and 0.844 each, on the other hand $C^*$ slope was 0.480.

  • PDF

Creep Crack Propagation Properties of Rotor Steel under Constant Load and Constant Ct Condition (일정하중 및 일정Ct에서 로터강의 크리프 귤열전파 특성)

  • Jeong, Soon-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.105-111
    • /
    • 2001
  • The creep crack growth properties in 3.3NiCrMoV steel were investigated at 55$0^{\circ}C$ by using CT specimen under constant load and constant Ct condition that was held during crack growth of Imm distance. Ct lelied on load line displacement rate, C*usually increased with crack length though load is reduced in order to maintain constant Ct value as crack growth and appeared scatter band. At constant load and Ct region, crack growth slope was 0.900 and 0.844 each, on the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip increased as Ct increase to the critical value, and after that value FCA decreased. For the tertiary creep stage of crack growth test, the most of displacement was due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of Ct.

  • PDF

Fracture Analysis of Flexural-Shear Failure in RC Beams (철근콘크리트보의 휨-전단균열에 대한 파괴역학적 해석)

  • Lim, Cheol-Won;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.418-423
    • /
    • 1998
  • This paper is intended to investigate the behavior of flexural-shear cracking in reinforced concrete beams without web reinforcement with FEM incorporated into a linear elastic fracture mechanics approach(LEFM). Each crack was propagated progressively by a finite length, then the quantitative reponses were examined. The results show that the horizontal crack was initiated by the bond-jnduced shear stress due to horizontal shearing action of the T-C force couple after the formation of the critical flexural crack. Also, the horizontal crack is considered to be a major factor of shear failure in slender reinforced concrete beams without web reinforcement.

  • PDF

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

A Study on the Fracture Phenomena in Optical Disks due to Increase of the Rotating Speed (회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구)

  • Cho, Eun-Hyoung;Park, Jun-Min;Seo, Young-Sun;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.339-344
    • /
    • 2000
  • In this study, the fracture phenomena of optical disks are discussed and then some recommendations are presented to prevent the fracture. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks, which are robust to the disk fracture due to the high spinning speed of a disk. The first type is a disk reinforced by wire rings, the second type is a disk added by texture fibers, and the third type is a rubber-coated disk.

  • PDF

Creep Crack Growth Properties of Low Pressure Turbine Rotor Steel under Constant Load and Ct

  • Jeong, Soon-Uk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • The propagation rate(da/dt) prediction parameter and the microstructure properties of creep crack in domestic 3.3NiCrMov steel were investigated at 550$\^{C}$ by using 0.5" CT specimen under constant load(4090N) and constant Ct(300∼4000N/mhr) condition that was maintained during crack growth of 1mm distance. C* usually increased with crack length though load was reduced in order to maintain constant Ct value as crack growth and considerably showed the scatter band, but Ct depended on load line displacement rate and represented a good relation with da/dt. At constant toad and Ct region, crack growth slope was 0.900 and 0.844 each, in the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip was increased as Ct value increase to the critical value, and after that value FCA decreased. The average diameter ditribution of cavity in FCA showed the greatest value about 1.5 ㎛ when Ct=2000N/mhr. The increasing of Ct in FCA view point enlarged the size of damage area and the size reached to maximum 800 ㎛ when Ct=2000N/mhr.