• Title/Summary/Keyword: crimping

Search Result 29, Processing Time 0.025 seconds

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

A study on the application and manufacture of paper sheet containing lyocell fiber( I ) (Lyocell 섬유를 함유한 종이의 제조 및 적용에 관한 연구( I ))

  • 김종열;류운형;유성종;김정열;신창호;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • In order to investigate the applicability of lyocell fiber to filter paper, papper sheets were manufactured with the addition of lyocell fibers in various length(1.5 denier: 2, 3, 4mm) and content(10, 30, 50%) and their physical characters, such as fibrilation rate, adsorption efficiency of methylene blue(MB), paper formation, and crimping ability, etc, were tested. The level of main fibrilation from lyocell fiber was higher in wet beating process than that in free beating because of the higher strength of lyocell fiber compared with wood fiber. Fibrilation could be observed at the degree of beating over 30$^{\circ}$ SR in wet beating with Valley beater. The air permeability and tear factor of the paper increased and the paper formation index decreased according to the increase of fiber length. The weak binding force of lyocell fiber in spite of its higher fiber strength, might be a limitng factor in addition of lyocell fiber to the natural wood pulp in manufacturing the paper having the needed physical properties. High contents of wood pulp decreased air permeability, the breaking length, tear factor, the bursting strength, and paper formation index in paper sheets. As the contents of lyocell increased from 10% to 100%, the adsorption efficiency of MB was elevated to 1.7-7.9 times compared with that in 100% wood pulp. But the length of lyocell fiber did not affect the MB adsorption.

  • PDF

A Study on the impact on the quality of hemming the number of hemming process (헤밍 공정의 횟수가 헤밍 품질에 미치는 영향에 관한 연구)

  • Shin, Na-Eun;Choi, Moon-Ho;Choi, Young-Deok;Choi, Hae-Un;Jang, Rae-Seong;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this study, it was investigated by comparing the experimental hemming by the 3 steps and 2 steps in order to stabilize the quality of the hemming process. In the experimental results, the three-step hemming superior to the two-step one and the dimensional stability of part that was made by the three-step on was high. When the second stage Hemming has been found that the deflection caused by the force to the wear of the punch becomes larger plane can be folded by the hemming crimping and crimp uncertain.

A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose (항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

Optimal Design of a Satellite Module Considering Local Stabilities (국부 안정성을 고려한 인공위성 모듈의 구조 최적설계)

  • Park,Jeong-Seon;Im,Jong-Bin;Kim,Jin-Hui;Jin,Ik-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.36-43
    • /
    • 2003
  • In this study, a satellite payload module was optimized by considering local stabilities. As design constraints in the satellite structure, local instabilities such as wrinkling, dimpling, crippling for honeycomb structures and crippling failure mode for beams were considered in addition to frequency and stress constraints. The constraints for the local instabilities (uncommon in general structures) were taken for the optimization of a satellite structures under severe launching environments. The analysis was performed combining the finite element analysis and optimization program. From the optimization results, it was found that frequency, crippling and wrinkling were the most critical constraints to achieve the design goals. Also, the importance of each design variable was estimated. Finally, the optimum design of the payload module was achieved for various design constraints and design parameters.

Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis (유한요소해석을 이용한 M8 블라인드 리벳 너트 형상 최적 설계)

  • Gu, B.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Blind rivet nuts are increasingly used in automotive for the joining of sheets. Their application, however, requires appropriate design guides to prevent catastrophic events arising from the failure of joints. In this study, the shaft shape of a frequently used M8 blind rivet nut is optimized based on 3D numerical analysis of the blind rivet nut considering the characteristics of thread. The thread needs to be modeled to suitably consider the fastening of the M8 bolt after the crimping process. FE analysis showed that while the friction in the contact between crimp flange and plate has no significant effect on the crimp geometry, shaft thickness (t) and shaft height (h) are the most significant design variables. The parameter study including various combinations of t and h reveals that they affect the gap (the distance between the crimped flange and the plate that develops through riveting) and the load acting on the plate. The gap is an indicator of the tightening force. It is found that t is inversely proportional to the gap, and proportional to the load, whereas h is proportional to the gap and inversely proportional to the load. Based on our FE analysis results, we propose the range 0.062 < t/h < 0.1 to ensure sufficient fastening (high clamping load, small gap) of the M8 blind rivet nut. The design guide for determining the t/h ratio proposed in this study can be used for general quantitative analysis of the size and the t/h ratio of blind rivet nuts.

Packages of Persimmons Exported from Korea to USA and Temperature Conditions during Sea Transport (미국 수출 단감 포장의 현황 및 수송 중 컨테이너 온도관리 실태)

  • Ahn, Gwang-Hwan;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Current status on consumption and packaging of sweet persimmons in USA was surveyed by visiting the market, and three sea shipments were conducted as model export trial from Korean to USA with measurement in ship container temperature and fruit quality. Strategy to promote the export of Korean persimmons was derived. There have been gradual decrease in the price of persimmons due to their increases production, but there seems potential growth in consumption of the fruits from Asian, Hispanic and American people. Compared to the fruits from other countries, Korean persimmons are desired to have higher soluble solid content with stronger red color, but too large sizes are not favored in American market. There has often been temperature fluctuation in shipment container during the sea transport to USA, resulting in surface blackening, skin black spotting and flesh softening. Plastic bag packages with inappropriate unitizing crimping were found to sometimes build up unproper modified atmosphere (high $O_2$ and low $CO_2$) giving high rate of physiological injury.

  • PDF

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.