• 제목/요약/키워드: cribellum

검색결과 4건 처리시간 0.019초

Silk Spinning Apparatuses in the Cribellate Spider Nurscia albofasciata (Araneae: Titanoecidae)

  • Park, Eun-Ah;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.153-160
    • /
    • 2009
  • The fine structural characteristics of the silk spinning apparatus in the titanoecid spiders Nurscia albofasciata have been examined by the field emission scanning electron microscopy (FESEM). This titanoecid spiders have a pair of medially divided cribella just in front of the anterior spinnerets, and the surface of the cribellum is covered by hundred of tiny spigots which produce numerous cribellate silk fibrils. The cribellar silks are produced from the spigots of the sieve-like prate. and considered as a quite different sort of catching silk with dry-adhesive properties. The other types of the silk spigots were identified as follows: ampullate, pyriform and aciniform glands. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another 1-2 pairs of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets, and two kinds of the aciniform spigots feed silk into the middle (A type) and the posterior spinnerets (both of A & B types), respectively.

Capture silk scaffold production in the cribellar web spider

  • Yan Sun;Seung-Min Lee;Bon-Jin Ku;Eun-Ah Park;Myung-Jin Moon
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.11.1-11.9
    • /
    • 2021
  • Spider capture silk is a natural scaffolding material that outperforms most synthetic materials in terms of its combination of strength and elasticity. Among the various kinds of silk threads, cribellar thread is the most primitive prey-capturing type of spider web material. We analyzed the functional organization of the sieve-like cribellum spigots and specialized calamistral comb bristles for capture thread production by the titanoecid spider Nurscia albofasciata. The outer cribellar surface is covered with thousands of tiny spigots, and the cribellar plate produces non-sticky threads composed of thousands of fine nanofibers. N. albofasciata cribellar spigots are typically about 10 ㎛ long, and each spigot appears as a long individual shaft with a pagoda-like tiered tip. The five distinct segments comprising each spigot is a defining characteristic of this spider. This segmented and flexible structure not only allows for spigots to bend individually and join with adjacent spigots, but it also enables spigots to draw the silk fibrils from their cribella with rows of calamistral leg bristles to form cribellar prey-capture threads.

살깃자갈거미(Nurscia albofasciata) 방적장치의 미세구조 (Fine Structure of the Silk Spinning Apparatus in the Spider Nurscia albofasciata)

  • 박은아;문명진
    • Applied Microscopy
    • /
    • 제39권2호
    • /
    • pp.157-165
    • /
    • 2009
  • 체판이 있는 자갈거미과 (Titanoecidae)의 거미를 실험재료로 체판류가 지닌 방적장치와 토사관의 미세구조적 특성을 고배율의 주사전자현미경(FESEM)으로 관찰하였다. 살깃자갈거미(Nurscia albofasciata)의 실크 방적장치는 복부의 방적돌기 위쪽에 있는 체판과 3쌍의 방적돌기로 이루어져 있었다. 체판은 정중면을 중심으로 분리된 두 개의 타원형 구조로, 표면에는 유연한 구조를 지닌 큐티클성 토사관들이 조밀하게 분포되어 있었고, 체판에서 생성된 수백가닥의 미세한 북슬털은 피식자의 보행을 방해하는 포획사의 기능을 수행할 것으로 추정되었다. 한편 방적돌기에서는 병상선, 이상선, 포도상선 등 3종류의 실크 분비선이 모든 성별에서 관찰되었는데, 병상선은 전 및 후방적돌기를 통해 연결되어 있었고, 이상선은 전방적돌기를 통해, 그리고 포도상선은 중 및 후방적돌기의 표면을 통해 토사관이 형성되어 있었으며, 성별에 따른 토사관의 다형현상은 확인되지 않았다. 특징적으로 이 종류의 거미에서는 두 종류의 포도상선이 관찰되었는데, 이 중에서 B형 포도상선은 후방적돌기에서만 관찰되었고, 체판의 토사관과 유사한 미세구조적 특성을 지니고 있음이 확인되었다.

Maternal Influence on Spiderlings' Emergence from the Cocoon: Observations in a Subsocial Spider

  • Kim, Kil-Won
    • Journal of Ecology and Environment
    • /
    • 제32권1호
    • /
    • pp.33-39
    • /
    • 2009
  • Brood caring behavior was observed in Amaurobius ferox (Araneae, Amaurobiidae), a semelparous subsocial spider, from cocoon construction until the emergence of spiderlings from the cocoon. Unlike most spiders, which emerge from cocoon by their own means, A. ferox mothers intervene in the process of the emergence of their young. I manipulated broods by removing the mother prior to emergence to determine the effects of maternal behavior on the emergence of spiderlings. My results showed that maternal intervention making the cocoon expansion and its exit, is not absolutely necessary for the emergence of A. ferox spiderlings from the cocoon. Nine clutches out of ten were able to get out of the cocoon by their own means without their mother's help. There was no difference between control groups ('with mother') and experimental groups ('without mother') in the number of spiderlings that emerged ($96.9{\pm}25.3$ vs. $90.4{\pm}14.2$, respectfully) and in the time from the beginning to the end of emergence ($36{\pm}12$ vs. $41{\pm}17$ hours). Time from eclosion until the emergence of the first individual in a clutch, however, was greater in the mother-absent group (3.5 days) than in the control group (2.0 days). The construction of the cocoon by the mother required always occurred in the same area within the retreat, and took approximately 6 hours, and the mother guarded the eggs during the incubation period. The emergence of the spiderlings followed a sigmoidal pattern. After emergence, the spiderlings formed a very compact group on the cocoon, which may be important in securing maternal care. The absence of cribellum and calamistrum, structures likely involved in their survival, observed in individuals of the first instar suggests that in the first stage of life, the spiderlings are dependent on their mother.