• Title/Summary/Keyword: crevice

Search Result 142, Processing Time 0.023 seconds

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

A Study on the Crevice Corrosion for Ferritic Stainless Steel (페라이트 스테인리스강의 틈부식에 대한 연구)

  • Baik Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.51-54
    • /
    • 2004
  • In recently days, the breed fish farm is increased in the beach side for farming fish. In such a farm, the heater is requested for preventing freezing in cold season. The heating material are requested high corrosion resistance and strength for endurance high corrosive salt and pressure. In case of low corrosion resistance and/or strength, the heating element shall be broke down and eventually make spillage or leaking contaminated salt. In the most cases, crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. In this study, the crevice corrosion of Ferritic type 430 stainless steel is investigated. The size of specimen is $15{\times}20{\times}3mmt$. Test solution is 1N H2SO4 + 0.05N NaCl. The artificial crevice gap size is $0.24{\times}3{\times}15mmL$. Crevice corrosion is measured under applied voltage 300mV(SCE) to the external surface. the result of this study showed that 1) the induced time for initiation of crevice is 750seconds, 2) potential is dropped in the crevice from the top of gap opening from -320 to -399mV. The result confirmed that the potential drop(IR mechanism) in the crevice is one of mechanism for crevice corrosion.

  • PDF

A Study on the IR Drop in Crevice of AISI 304 Stainless Steel by Temperature Variation (온도변화에 따른 AISI 304SS의 틈내 전위강하에 관한 연구)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.872-878
    • /
    • 2003
  • As the results of recent industrial development, many industrial plants and marine structures are exposed to severe corrosion environment than before. Especially, under the wet environment, crevice corrosion damage problems necessarily occur and encourage many interests to prevent them. In this study, the electrochemical polarization test was carried out to study characteristics of crevice corrosion for AISI 304 stainless steel in various solution temperatures. The results are as follows ; 1) as the solution temperature increased in IN $\textrm{H}_2\textrm{SO}_4$, the passive current density and critical current density were increased, whereas corrosion potential and break down potential were nearly constant, 2) as the solution temperature increased. the induced time for initiation of crevice corrosion was shortened. 3) The potential range in the crevice was -220mV/SCE to -380mV/SCE according to the distance from the crevice opening, which is lower than that of external surface of -200mV/SCE.

A Study on the Crevice Corrosion Behavior of Chromium Plating (크롬도금의 틈부식 거동에 관한 연구)

  • 곽남인;임우조
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.324-328
    • /
    • 2003
  • This study was made on the crevice corrosion behavior of chromium plating in fresh water. Under the various crevice, the electrochemical polarization test of chromium plating was carried out. Results are discussed In terms of corrosion potential, polarization resistance, corrosion current density and cathodic control of chromium plating.

Modeling of Piston Crevice Hydrocarbon Oxidation in SI Engines (전기점화 기관 간극 체적 내 미연탄화수소의 산화 모델링)

  • Choi, Hoi-Myung;Kim, Se-Jun;Min, Kyung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.884-889
    • /
    • 2001
  • Combustion chamber crevices in SI engines are identified as the largest contributor to the engine-out hydrocarbon emissions. The largest of crevice region is the piston ring pack crevice. To predict and understand the oxidation process of piston crevice hydrocarbons, a 3-dimensional numerical simulation method was developed. A engine shaped computational mesh with moving grid for piston and valve motions was constructed. And a 4-step oxidation model involving 7 species was used and the 16 coefficients in the rate expressions were optimized based on the results from a detailed chemical kinetic mechanism for the oxidation condition of engine combustion chamber. Propane was used as a fuel in order to eliminate oil layer absorption and liquid fuel effect.

  • PDF

Chemical Equilibrium Modeling for Magnetite-Packed Crevice Chemistry in a Nuclear Steam Generator

  • Bahn, Chi-Bum;Rhee, In-Hyoung;Hwang, Il-Soon;Park, Byung-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1783-1789
    • /
    • 2005
  • Modeling of a steam generator crevice in a nuclear power system needs to take into account both thermalhydraulic and chemical phenomena. As a first step towards developing a reliable model, a chemical equilibrium model was developed to predict chemical speciation in a magnetite-packed crevice by adopting the “tableau” method. The model was benchmarked with the available experimental data and the maximum deviation did not exceed two orders of magnitude. The developed model was applied to predict the chemical speciation in a magnetite-packed crevice. It was predicted that caustic environment was developed by the concentration of NaOH and the dissolution of magnetite. The model indicated that the dominant aqueous species of iron in the caustic crevice was $FeO_2\;^-$. The increase of electrochemical corrosion potential observed in the experiment was rationalized by the decrease of dissolved hydrogen concentration due to a boiling process. It was predicted that under the deaerated condition magnetite was oxidized to hematite.

Crevice Corrosion Study of Materials for Propulsion Applications in the Marine Environment

  • Deflorian, F.;Rossi, S.;Fedel, M.;Zanella, C.;Ambrosi, D.;Hlede, E.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.288-295
    • /
    • 2015
  • The present work addresses crevice and galvanic corrosion processes occurring at the cylinder head gasket/cylinder head interface and cylinder head gasket/cylinder liner interface of four-stroke medium-speed diesel engines for marine applications. The contact between these systems and the marine environment can promote formation of demanding corrosion conditions, therefore influencing the lifetime of the engine components. The electrochemical behavior of various metals and alloys used as head gasket materials (both ferrous alloys and copper alloys) was investigated. The efficacy of corrosion inhibitors was determined by comparing electrochemical behavior with and without inhibitors. In particular, crevice corrosion has been investigated by electrochemical tests using an experimental set-up developed starting from the requirements of the ASTM G-192-08, with adaptation of the test to the conditions peculiar to this application. In addition to the crevice corrosion resistance, the possible problems of galvanic coupling, as well as corrosive reactivity, were evaluated using electrochemical tests, such as potentiodynamic measurements. It was possible to quantify, in several cases, the corrosion resistance of the various coupled materials, and in particular the resistance to crevice corrosion, providing a basis for the selection of materials for this specific application.

A Study on the Corrosion Inhibition Effects of Sodium Heptanoate for Carbon Steel in Aqueous Solution

  • Won, D.S.;Kho, Y.T.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • The carboxylates as a corrosion inhibitor has been studied by many researchers because of its environmental safety and low depletion rate. However, conventional test methods of inhibitor such as weight loss measurements, linear polarization resistance and corrosion potential monitoring etc., evaluate uniform corrosion of metals. These methods are unable to evaluate crevice-related corrosions, which are encountered in most of heat exchanging facilities. In order to choose the optimum corrosion inhibitor, the appropriate test methods are required to evaluate their performances in service environment. From this point of view, polarization technique was used to evaluate the characteristics of sodium heptanoate on corrosion behavior for carbon steel. Especially a thin film crevice sensor technique were applied to simulate the crevice corrosion in this study. From these experiments, we found that oxygen as an oxidizing agent was required to obtain stable passive film on the metal. Presence of oxygen, however, accelerated crevice corrosion. Potential shift by oxygen depletion and weakened inhibitive film inside the crevice were responsible for such accelerated feature. It is shown that film for corrosion inhibition is a mixture of sodium heptanoate and iron (II) heptanoate as reaction product of iron surface and sodium heptanoate. The iron (II) heptanoate which has been synthesized by reaction of heptanoic acid and ferrous chloride in methanol solution forms bidentate complex.

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

Study on enhancement of evaporating heat transfer in narrow horizontal annular crevices (좁은 수평 환형 Crevice에서의 증발열전달촉진에 관한 연구)

  • Bae, Sang-Cheol;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1481-1490
    • /
    • 1996
  • This study is intend to improve flow pattern within evaporator, which is low quality and low mass flux, by installing narrow horizontal annular crevice so that enhance heat transfer coefficient. The motive, which made to study heat transfer enhancement by using narrow annular crevice, came from capillary phenomena and pumping force of generating vapor on refrigerant boiling. Tests were run about 5 models of turbulence promoter with CFC-12, in the range of evaporating temperature (15.deg. C), mass flux (50 to 100 kg/m$\^$2/s), heat flux (3.4 to 6.7 kW/m$\^$2/), quality (0.1 to O.5). It is observed that flow pattern within evaporator is changed closely to semi-annular flow or annular flow, of which refrigerant liquid is reached to the upper side of tube by using narrow annular crevice. When the narrow annular crevice is installed in the evaporator tube, local heat transfer coefficient is generally more improved than that of smooth tube. That fact is according to observed result of flow pattern. It is learned that narrow annular crevice has more efficiency at a low mass flux. At the TP-5, enhancement of heat transfer rate is about 170% compare to that of smooth tube on a low mass flux (50 kg/m$\^$2/s), and it is about 134% on a high mass flux (100 kg/M$\^$2/S), so that we know that it is on a very high condition.