• Title/Summary/Keyword: crescent domain

Search Result 4, Processing Time 0.02 seconds

ON SUBCLASSES OF FUNCTIONS WITH BOUNDARY AND RADIUS ROTATIONS ASSOCIATED WITH CRESCENT DOMAINS

  • Afis, Saliu;Noor, Khalida Inayat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1529-1539
    • /
    • 2020
  • The present work is aimed at presenting some characteristic properties of functions that map open unit disk onto a lune in the right half plane. Furthermore, we introduce subclasses of functions with boundary and radius rotations which are related to crescent regions. Some useful results, which include coefficient inequalities and some subordination properties associated with these subclasses are derived. Consequently, related problems concerning these classes are also studied.

The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

  • Park, Joohyun;Zhao, Haiyan;Chang, Sunghoe
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.753-758
    • /
    • 2014
  • Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrinmediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the $1^{st}$ ${\alpha}$-helix of the SNX9 BAR domain and proved that together with the N-terminal helix ($H_0$) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrinmediated endocytosis.

DOBI is cleaved by caspases during TRAIL-induced apoptotic cell death

  • Park, Sun-Young;Shin, Jin-Na;Woo, Ha-Na;Piya, Su-Jan;Moon, Ae-Ran;Seo, Young-Woo;Seol, Dai-Wu;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.511-515
    • /
    • 2009
  • Downstream of Bid (DOBI) known as Pus10, has been identified as a modulator of TRAIL-induced cell death using RNAi library screening. The crystal structure of DOBI has revealed that it is a crescent-shaped protein containing the pseudouridine synthase catalytic domain and a THUMP-containing domain. Here, we demonstrated that DOBI is expressed in various tissues such as heart and lung, and is also expressed in various tumor cells such as HeLa and A549. Although ectopic expression of DOBI does not promote TRAIL death signaling in HeLa cells, knock-down of DOBI expression using shRNA inhibited TRAIL death signaling. DOBI is cleaved into a 54 kD cleaved DOBI during cell death, and the recombinant DOBI protein can be directly cleaved by caspases-3, or -8 in vitro. Together, these data suggest that the cleaved DOBI may acquire a new function, possibly by cooperating with tBid in the mitochondrial event of cell death caused by TRAIL.

Simulation of Temperature Distribution and Readout Signal of Magnetic Amplifying Magnetooptical System (도메인 확장형 광자기 디스크의 온도분포 및 재생신호 시뮬레이션)

  • Yang, Jae-Nam;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2004
  • Read out signal and temperature distribution of magnetic amplifying magnetooptical disk were studied. Temperature distribution of recording layer and adjacent layers were calculated when the disk was at rest. Mark size, length and location were simulated from a chain of recording beam pulses. In addition, signal amplitude depending on the shape of the marks, readout signals from the recording layer and amplified marks of the readout layer, were simulated. Simplified thermal conduction model was used to calculate the temperature distribution of recording and adjacent layers as a function of time as well as to calculate the mark size, length and location. Readout signal was calculated by the convolution of the disk reflectivity and the Gaussian beam intensity. Readout signal from the mark in the readout layer amplified to the size of the laser beam fumed out to be twice as large as the signal from the crescent shaped mark in the recording layer.