• Title/Summary/Keyword: creep-rupture

Search Result 206, Processing Time 0.02 seconds

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H) (초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과)

  • Ahn, Jong-Seok;Park, Jin-Keun;Lee, Gil-Jae;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

Study on the Improvement of Weld-joint Reliability in Waterwall Tubes of the Ultra Supercritical Coal Fired Boiler (석탄화력발전용 초초임계압(USC) 보일러 수냉벽 튜브 용접 신뢰성 향상에 대한 연구)

  • Ahn, Jong-Seok;Lee, Seung-Hyun;Cho, Sang-Kie;Lee, Gil-Jae;Lee, Chang-Hee;Moon, Seung-Jae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The low alloy-steel material(1.0Cr-0.5Mo, SA213T12), which has widely been used for the waterwall tube in the conventional power plant, do not have enough creep rupture strength for waterwall tubes of the Ultra-supercritical(USC) boilers. According to this reason, the high-strength low alloy-steel(2.25Cr-1.0Mo, SA213T22) has newly been adopted for the waterwall tube in the USC boilers. This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process has not been conducted strictly.(preheating, P.W.H.T and so forth). Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

Development of CCD(Corrosion Control Document) in Refinery Process (정유공정의 CCD(Corrosion Control Document) 개발)

  • Kim, Jung-Hwan;Kim, Ji-Yong;Lee, Young-Hee;Park, Sang-Rok;Suh, Sun-Kyu;Lee, Yoon-Hwa;Moon, Il
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper focuses on techniques of improving refinery reliability, availability, and profitability. Our team developed a corrosion control document(CCD) for processing of the crude distillation unit(CDU). Recent study shows the loss due to corrosion in US is around $276 billion. It's a big concern for both managers and engineers of refinery industry. The CCD consists of numerous parts namely damage mechanism(DM), design data, critical reliability variable(CRV), guidelines, etc. The first step in the development of CCD is to build material selection diagram(MSD). Damage mechanisms affecting equipments and process need to be chosen carefully based on API 571. The selected nine DM from API 571 are (1) creep/stress rupture, (2) fuel ash corrosion, (3) oxidation, (4) high temperature sulfidation, (5) naphthenic acid corrosion, (6) hydrochloric acid(HCL) corrosion, (7) ammonium chloride(salt) corrosion, (8) wet $H_2S$ corrosion, and (9) ammonia stress corrosion cracking. Each DM related to corrosion of CDU process was selected by design data, P&ID, PFD, corrosion loop, flow of process, equipment's history, and experience. Operating variables affecting severity of DM are selected in initial stage of CRV. We propose the guidelines for reliability of equipments based on CRV. The CCD has been developed on the basis of the corrosion control in refinery industry. It also improves the safety of refinery process and reduces the cost of corrosion greatly.

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

A Study on the Evaluation of Materials for Aircraft Turbofan Engine Using Data Base. (항공기용 터어보팬 엔진의 재료선정용 DATA BASE를 이용한 재료평가에 관한 연구)

  • Kim, Gwang-Bae;Bu, Jun-Hong;Kim, Hak-Bong;Im, Gyeong-Ho;Yu, Sang-Sin
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.156-167
    • /
    • 1991
  • The purpose of this study is to develop a data base for material selection of turbofan engines, which is preferred in these days on many application due to their high performance with economical operation. Hundreds of Super Alloys have been developed by this time, each having special properties. Since it is very difficult task for a design engineer to select materials of adequate Properties for specific engine components, a good data bate is strongly desired to manage informations on various kinds of materials. However, no basic research is reported in this area so far in our country. The operating conditions such as temperature, pressure, rpm of spools are assumed to be provided by other mechanical studies. Creep rupture strength, corrosion resistance, yield strength, thermal expansion, melting point, etc., are considered as typical properties in this study to search a group of candidate materials. Formability, manufacturing or purchase cost can also be important variables to be considered. As a result of this study, a user-friendly computer program has been developed for input of new material information, interactive material selection, and output of selection results. Finally, discussion is presented from. the viewpoint of materials engineering. A method to evaluate the performance of the selected materials is also suggested.

  • PDF