• 제목/요약/키워드: creep-rupture

Search Result 206, Processing Time 0.02 seconds

Characteristics of Short-Term Creep Rupture in STS304 Steels (STS304강의 단시간 크리프 파단특성 평가)

  • Kim, Seon-Jin;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels (스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.

New Considerations on Variability of Creep Rupture Data and Life Prediction (크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding (재료손상과 입계 미끄럼을 고려한 증기배관의 크리프 파단수명 및 변형률 예측)

  • 홍성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1182-1189
    • /
    • 1995
  • Several methods have been developed to predict the creep rupture time of the steam pipes in thermal power plant. However, existing creep life prediction methods give very conservative value at operating stress of power plant and creep rupture strain cannot be well estimated. Therefore, in this study, creep rupture time and strain prediction method accounting for material damage and grain boundary sliding is newly proposed and compared with the existing experimental data. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The results showed good correlation between the theoretically predicted creep rupture time and the experimental data. And creep rupture strain may be well estimated by using the proposed method.

Creep Deformation and Rupture Behavior of Alloy 690 Tube (Alloy 690 전열관의 크리프 변형 및 파단 거동)

  • Kim, Woo-Gon;Kim, Jong-Min;Kim, Min-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

Creep Life Prediction of Type 316LN Steel Using Minimum Commitment Method (최소구속법을 이용한 Type 316LN 강의 크리프 수명 예측)

  • Kim W.G.;Yoon S.N.;Ryu W.S.;Yi W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • A minimum commitment method (MCM) was applied to predict the creep rupture life of type 316LN SS. For this purpose, a number of the creep rupture data for the type 316LN SS were collected through literature survey and experimental data of KAERl, Using the short-term creep rupture data under 2000 hr, the long-term creep rupture life above $10^5$ hour was predicted by means of the MCM. An optimum value of A, P and G function, used in the MCM equation, was determined respectively, and the creep rupture life with the A values in different temperatures was compared with the experimental data and the predicted curves.

  • PDF

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 Jointed by Friction Welding (마찰용접된 니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.58-63
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steels jointed by friction welding wasinvestigated at the elevated temperatures of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture time and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 26.1, -22.4, 22.5, -18.5, 17.4, -14.3 and 6.9, -8.1, respectively. The stress exponents decreased with increasing creep temperature. The creep life prediction was derived by the Larson-Miller parameter (LMP) method and the result equation obtained is as follows: T(logtr+20)=-0.00148${\sigma}^2$-3.089${\sigma}$+23232. Finally, the results were compared with those of the base metal for Alloy718.

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor (초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가)

  • Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Hong, Sung-Deok;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 (니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.52-57
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steel was investigated at the elevated temperatures range of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture tim and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 33.5, -24.9, 26.1, -21.2, 16.8, -12.8 and 10, -8.2, respectively. The stress exponent decreased with increasing creep temperature. The creep lift prediction was derived by the Larson-Miller parameter (LMP) method and the resultant equation was obtained as follows: T($logt_r$+20)=-0.00252 ${\sigma}^2$-1.377${\sigma}$+-22718.

Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF