• Title/Summary/Keyword: creep-fatigue model

Search Result 33, Processing Time 0.023 seconds

Fatigue Life Prediction Model of 12% Cr Rotor Steel (12% 크롬 로터강의 피로수명 예측 모델에 관한 연구)

  • 장윤석;오세욱;오세규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1349-1355
    • /
    • 1990
  • By examining the fatigue deformation properties of 12% Cr rotor steel which has been proved to have high fatigue and creep rupture strength around 600deg. C, authors reviewed major fatigue life prediction models such as Manson, Langer and Morrow equations, and following results were obtained. (1) A simple life prediction model for 12% Cr rotor steel was obtained as follows : DELTA..epsilon.$_{t}$ =2.18+.sigma.$_{u}$ /E+ $N^{-0.065}$+ $e^{0.6}$ $N^{-0.025}$ This equation shows that fatigue life, N, can be easily determined when total strain range, DELTA..epsilon.$_{t}$ and ultimate tensile strength, .sigma.$_{u}$ are known by simple tension test on the given test conditions. (2) Life prediction equation with equivalent maximum stress, DELTA..sigma./2, corresponding maximum strain in one cycle at room temperature is as follows: DELTA..sigma./w=-7.01logN+96.69+96.69

Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$ ($Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향)

  • 김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF

Solder Alloy Types and Solder Joint Reliability Evaluation Techniques (솔더 합금 종류 및 솔더 조인트의 신뢰성 평가 기법)

  • You-Gwon Kim;Heon-Su Kim;Tae-Wan Kim;Hak-Sung Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.17-29
    • /
    • 2023
  • In this paper, a method for evaluating the reliability of solder joints is introduced, as they play a crucial role in packaging technology due to the miniaturization and high-performance requirements of electronic device. Firstly, properties of solder based on various alloy compositions and solder types are described, followed by an analysis of solder joint structures in different packages. Next, the influence of solder alloy composition and microstructure on the thermal and mechanical properties of solder is analyzed, and solder creep behavior is briefly introduced. Subsequently, analytical techniques considering creep models and fatigue models for reliability evaluation are presented, and various ways to improve the reliability of solder joints are discussed. This study is expected to provide valuable information for evaluating and enhancing the reliability of solder joints in the semiconductor packaging technology field.

Solder Joint Reliability of Bottom-leaded Plastic Package (BLP 패키지의 솔더 조인트의 신뢰성 연구)

  • 박주혁
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism - (냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1676-1685
    • /
    • 2003
  • Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

Analysis of Material Response Based on Chaboche Unified Viscoplastic Constitutive Equation; (CHABOCHE 통합 점소성 구성방정식을 이용한 재료거동해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yu, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3516-3524
    • /
    • 1996
  • Service conditions for structures at elevated temperatures in nuclear power plant involve transient thermal and mechanical load levels that are severe enough to caeuse inelastic deformations due to creep and plasticity. Therefore, a systematic mehtod of inelastic analysis is needed for the design of structural components in nuclear poser plants subjected to such loading conditions. In the present investigation, the Chabodhe model, one of the unified viscoplastic constitutive equations, was selected for systematic inelastic analysis. The material response was integrated based on GMR ( generallized mid-point rule) time integral scheme and provided to ABAQUS as a material subroutine, UMAT program. By comparing results obtaned from uniaxial analysis using the developed UMAT program with those from Runge-Kutta solutions and experimentaiton, the validity of the adopted Chaboche model and the numerical stability and accuracy of the developed UMAT program were verified. In addition, the developed material subroutine was applied for uniaxial creep and tension analyses for the plate with a hole in the center. The application further demonstrates usefulness of the developed program.

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.

Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change (모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석)

  • Kim, Moon-Young;Yang, Sung-Ho;Park, Sang-Yeol;Kim, Sang-Hoon;Park, Hye-Sook;Won, Jong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

Development of Polymer Impregnants and Properties of Polymer Impregnated Concrete (폴리머침투제의 개발과 폴리머침투콘크리트의 특성에 관한 연구)

  • Byun, Keun Joo;Lee, Sang Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 1992
  • Polymer-Impregnated Concrete(PIC) is a composite material of concrete and polymer. PIC has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, the usage of PIC has been limited to repairing materials and non-structural applications due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is experimentally to develop the optimum mixing proportions of polymer impregnants and the stress-strain responses, the strength characteristics, the fatigue and creep behaviors, and the durabilities of MMA(methyl methacrylate)-based PIC.

  • PDF