• Title/Summary/Keyword: creep-fatigue model

Search Result 33, Processing Time 0.028 seconds

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Thermal Cycling Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더 접합부의 열사이클링 해석)

  • 유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on system board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. The creep life was estimated the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life was obtained at the thermal cycling test condition from $-65^{\circ}C$ to $150^{\circ}C$. It was increased about 3.5 times in comparison with that from $0^{\circ}C$ to $100^{\circ}C$. At the same conditions, the fatigue life of SMD structure as the change of pad structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

A Study on the Flexural Damage of RC Beams Under Fatigue Loading Using A Cyclic Creep Characteristics (반복크리프 특성을 이용한 피로하중을 받는 RC 보의 휨손상 연구)

  • 오병환;김동욱;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • The creep strain of the compression zone of concrete beams subjected to cyclic loading should be a significant factor in increasing strain and deflections. An analytical model which is similar to a previous one is presented to predict the increase in cyclic creep strain and the damage using the properties of the constituent materials: concrete and steel. The analytical expressions are compared with our experimental data. The effect of concrete-creep is accounted by the term En, Icr,n, and Mcr,n. In this study, it is proved that cyclic creep exponents 'n' in Cyclic Creep Model, according to the parameters -strength, range of stress- have the various values. It is hoped that with the availability of more experimental data and better understanding of some of the complex behavior, the model could be further improved.

  • PDF

Cyclic Creep Model for the Deflection Calculation of Reinforced Concrete Flexural Members under Fatigue Loads (피로하중을 받는 철근콘크리트 휨부재의 처짐산정을 위한 반복크리프 모델)

  • 오병환;김동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • The present paper focuses on the development of a realistic analysis model for the deformation calculation of reinforced concrete beams subjected to fatigue loadings. The proposed model considers the effect of cyclic creep, which arises from the repeated loading, to calculate the deformation of reinforced concrete beams. A comprehensive experimental program has been set up to identify the deformation accumulation of reinforced concrete beams under repeated loadings. The major test variables were the concrete compressive strength and the magnitude of fatigue loads. The model was calibrated from the present test results. The proposed model allows more realistic analysis of reinforced concrete beams under fatigue loads, especially deformation accumulation of such beams.

Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel (Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCC-MRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor (1Cr1Mo1/4V 터빈 로터강의 크리프 손상 모델에 관한 연구)

  • Choi, Woo-Sung;Fleury, Eric;Song, Gee-Wook;Kim, Bum-Shin;Chang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed.

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions (열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.