• Title/Summary/Keyword: creep strength

Search Result 435, Processing Time 0.044 seconds

An Experimental Research on the Material Properties of Super Flowing Concrete (초유동 콘크리트의 재료특성에 관한 실험적 연구)

  • 김진근;한상훈;박연동;노재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.56-62
    • /
    • 1995
  • In this study, the properties of super flowing cocrete containing gly ash were experimentally investigated and compared with those of ordinary concrete. Tests were carried out on five types of super flowing concrete mixes containing fly ash and three types of ordinary concrete mixes without fly ash. Flow test, O-funnel test, box test, Ltype thest and slump test were carried out to obtain the properties for the workability of fresh concrete. Compressime strength, splitting tensile strength, modulus of elasticity. creep and shrinkage test were also obtained as the mechanical properties of hardened concrete. In fresh concrete, it was found that super flowing concrete had excellent workability and flowability compared with ordinary concrete, and the volume ratio of coarse aggregate to concrete volume greatly influenced flowability. Super flowing concrete also had good mechanical properties at both early and late ages with compressive strengths reaching as high as 40 MPa at 28 days. The creep deformation of super flowing concrete investigated were relatively lower than that of ordinary concrete.

  • PDF

Effects of Various Stress Histories Including Creep Loading on Strength of a Geogrid (크리프 하중을 포함한 응력이력이 지오그리드 강도에 미치는 영향)

  • Park, Young-Kon;Fumio Tatsuoka
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.441-444
    • /
    • 2001
  • PVC로 코팅된 폴리에스테르 섬유로 만들어진 지오그리드 보강재에 대해 변형률을 달리하여 단일 또는 다단 크리프 하중단계를 포함한 하중을 연속적으로 작용시킴으로써 그 인장파괴강도를 검토하였다. 연구결과, 동일한 변형률에서 지오그리드의 인장파괴강도는 극한인장파괴가 되기 전에 작용된 웅력이력에 의해서 거의 영향을 받지 않는다. 또한 지오그리드의 설계파단강도는 적정한 변형률하에서 정의되어야 하며, 변형률 속도가 빠른 인장시험을 통해 지오그리드의 설계파단강도를 얻을 경우 이에 대한 보정이 필요할 것으로 사료된다.

  • PDF

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

A Study on the Reheat Crack around Welded Joint of Pressusre Vessel with 21/4Cr-1Mo Steel (21/4Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • Bang, Han Seo;Kim, Jong Myeong
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.227-227
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, 2 ¼Cr-1Mo steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence. (Received December 2, 1999)

A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel ($2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

Evaluation of Timependent Creep and Shrinkage of CIP Section in Asymmetric PSC Box Girder for Railroad Bridge (철도교용 비대칭 거더의 현장 타설부에서 나타나는 시간에 따른 크립 및 건조수축 평가)

  • Jung, Chi-Young;Park, Seung-Min;Ahn, Jin-Hee;Kim, Sang-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.973-978
    • /
    • 2011
  • In this study, effects due to differences of creep and shrinkage which is caused by material differences such as concrete characteristic and age in an asymmetric PSC box girder were evaluated. For this purpose the prestress distribution, creep and shrinkage were analyzed with the FE analysis program, LUSAS 14.3. As a result of the prestress, the stress distribution was stable. In case of the analysis result which was conducted with 1,000 days response time, the shear stress between PC section and CIP section is satisfied with design shear strength.

  • PDF

Creep Characteristic of QFP Solder Joint using Sn-3Ag-0.5Cu (Sn-3Ag-0.5Cu을 적용한 QFP 솔더 접합부의 크립특성에 관한 연구)

  • Jo, Yun-Seong;Han, Seong-Won;Kim, Jong-Min;Choe, Myeong-Gi;Park, Jae-Hyeon;Sin, Yeong-Ui
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.184-186
    • /
    • 2006
  • Sn-3Ag-0.5Cu is one of candidate as an alternative approach to conventional lead-tin solder. In order to evaluate that creep characteristic of QFP, we used Sn-3Ag-0.5Cu where the operating temperature is $100^{\circ}C$. The specimens were loaded to failure at average pull strength in the range of 20% to 25%, X-ray machine is used to eliminate effect of void. In this paper, relation of time-displacement and steady state creep rate was studied, and used to analyze the experimental result.

  • PDF