• Title/Summary/Keyword: creep of concrete

Search Result 451, Processing Time 0.026 seconds

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.

Prediction of Drying Shrinkage Behavior of Half PC Slab (Half PC slab의 건조수축 거동 예측)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.7-8
    • /
    • 2016
  • The use of half PC slab is increasing to shorten construction period. Because the drying shrinkage of topping concrete is restrained by PC slab, the tensile stress is generated at the topping concrete and the cracks can be occurred at the topping concrete due to drying shrinkage. Therefore, it is important to predict the tensile strain of half PC slab due to drying shrinkage to improve the quality of half PC slab. However, there is no studies on prediction of shrinkage behavior of half PC slab yet. Therefore, in this study, half PC slab was made, and the predictability of tensile strain generated at half PC slab due to drying shrinkage was investigated. The step by step method considering creep was used to estimate the tensile strain of half PC slab. In result, good agreement was obtained between the analytical and experimental values.

  • PDF

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

Minimum Thickness Requirements of Flat Plate Considering Construction Scheme (시공 계획을 고려한 플랫 플레이트 최소 두께)

  • 강성훈;최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.631-636
    • /
    • 2002
  • It is common in multistory flat-plate structures that newly cast slabs are supported by a number of previously cast floors. Then the weight of newly cast slabs is imposed on shored previously cast floors as load, and this load may be large as double as dead load. Because early-age construction loads cause large immediate deflection and creep deflection with cracks, this loads influence long-term behavior of slabs. In current provision, the minimum thickness is required to satisfy serviceability But this minimum thickness based on historical precedent is determined by span length, therefore the minimum thickness of current provision can not includes properly the effect of construction scheme including the number of shored floors and construction cycle. In the present study, a minimum thickness criterion, which includes the effect of concrete strength, geometry of slabs and construction scheme, was developed from computer-based iteration using deflection calculation procedure of current code method.

  • PDF

Long-Term Behavior of Composite Continuous Beams With Flexible Shear Connectors (슬립을 고려한 강합성 연속보의 장기거동해석)

  • 최동호;김호배;이동혁;고상은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.141-149
    • /
    • 2000
  • This study performs the elastic and viscoelastic analysis of composite continuous beams with flexible shear connectors. Due to creep and shrinkage of the concrete part, the stress redistribution between the concrete slab and steel beam, and the evolution of the redundant restraint reaction occur with time. Using the equation of equilibrium, internal and external compatibility condition, and constitutive relationships, mathematical formulations are formulated. The solution is obtained by means of numerical step-by-step techniques and the finite difference method. Numerical parametric studies are performed to evaluate the stress redistribution, and the evolution of the redundant restraint reaction. The parameters include the stiffness and spacing of shear connectors, the age of concrete at loading, and the relative humidity.

  • PDF

An Experimental Study on the Adhesive Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 부착강도에 관한 실험적 연구)

  • 전준창;조병완;조효남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.176-181
    • /
    • 1993
  • Recent increasing traffic volumes have made many bridges on highway be widened. Depending on the construction method of bridge widening, several undesirable problems have been arisen with the additional stresses resulting from de-staging of new bridge and the difference of the amount of creep and shrinkage between new and existing bridge. The main focus of this paper is given to investigate the variation of the adhesive strength of steel bar and construction joints of new and old concrete slab. The result shows that repeated vibration loadings was caused some bad effects on the construction joints between new and existing bridges.

  • PDF

Experimental Study for the Long-term Behavior of Shear Wall (전단벽의 장기거동 특성에 관한 실험적 연구)

  • 권승희;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.197-202
    • /
    • 2001
  • It is necessary to Investigate long-term behavior of vertical members such as column and shear wall because the long-term behavior induces the serviceability problem of reinforce-concrete structures. However, the long-term behavior on shear wall has not been fully studied. Experimental works are performed to understand the time dependent behavior of shear wall, especially the effect of loading area in this research. Three different types of cross sections are adopted, i.e., 10$\times$10 cm, 10$\times$30 cm, and 10$\times$50 cm with the same loading area of 10$\times$10 cm. The creep strains were different from point to point in the section of the shear wall specimen because of the nonlinear stress distribution. The effect of the nonlinear stress distribution was larger in the specimen with the larger width.

  • PDF

Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity (직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식)

  • 강병수;김택중;조용덕;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.