• Title/Summary/Keyword: creep of concrete

Search Result 451, Processing Time 0.025 seconds

Stress Analysis for Differential Drying Shrinkage of Concrete (콘크리트의 부등건조수축으로 인한 응력의 해석)

  • 김진근;김효범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.102-112
    • /
    • 1994
  • The drying shrinkage of concrete has a close relation to the water movement. Since the diffusion process of water in concrete is strongly dependent on the temperature and the pore humidity, the process is highly nonlinear phenomena. This study consists of two parts. The first is the development of a finite element program which is capable of simulating the rnoisture distri- ,bution in concrete, and the other is the estimation of the differential drying shrinkage and stress considering creep by using the modified elastic modulus due to inner temperature change and maturity. It is shown that the analytical results of this study are in good agreement with experlimental data in the literatures, and results calculated by BP-KX model. The internal stress caused by moisture distribution which was resulted from the diffusion process, was calculated :quantitatively. The tensile stress which occured in the drying outer zone mostly exceeded the tensile strength of concrete, and necessarily would result in crack formation.

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료모델과 열거동해석)

  • 강석원;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2001
  • A numerical model for the thermal response analysis of concrete structures is suggested. The model includes the stress-strain relationship, constitutive relationship, and multiaxial failure criteria at elevated temperature conditions. Modified Saenz's model was used to describe the stress-strain relationship at high temperatures. Concrete subjected to elevated temperatures undergoes rapid strain increase and dimensional instability. In order to explain those changes in mechanical properties, a constitutive model of concrete subjected to elevated temperature is proposed. The model consists of four strain components; free thermal creep strain, stress-induced (mechanical) strain, thermal creep strain, and transient strain due to moisture effects. The failure model employs modified Drucker-Prager model in order to describe the temperature dependent multiaxial failure criteria. Some numerical analyses are performed and compared with the experimental results to verify the proposed model. According to the comparison, the suggested material model gives reliable analytical results.

Time-Dependent Behavior of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의한 프리스트레스트 콘크리트 교량의 장기 거동 해석)

  • 오병환;최계식;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.73-76
    • /
    • 1989
  • A numerical procedure is developed to analyze the time-dependent behavior of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varing modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities.

  • PDF

An Experimental Study on Piping Failure of Earth Embankment (토질제체의 Piping 파괴에 대한 실험적 연구)

  • Jeong, Hyeong-Sik;Ryu, Jae-Il;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 1989
  • The creep ratio, which has been applied as a measure to prevent piping failure in designing embankments, has been originally proposed for the protection of masonry or concrete dam from piping along the boundary surface between the foundation soil and the bottom of the structure. In this study, it has been investigated whether this creep ratio could be applied for the earth embankment through the model test and we reevaluated the required creep ratio in the present design criteria. Based on this research, it was concluded that a piping failure would always occur within the embankment body and not through the boundary surface between the embankment and foundation. Therefore it could be said that the present design criteria are illogical to determine the design creep ratio according to less permeable soil no matter whether the soil forms embankment or foundation.

  • PDF

Non-linear fire-resistance analysis of reinforced concrete beams

  • Bratina, Sebastjan;Planinc, Igor;Saje, Miran;Turk, Goran
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.695-712
    • /
    • 2003
  • The non-linear structural analysis of reinforced concrete beams in fire consists of three separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (ii) the determination of the distribution of the temperature within the beam during fire; (iii) the evaluation of the mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (ii) and (iii) are dealt with in the present paper. We present a two-step computational procedure where a 2D transient thermal analysis over the cross-sections of beams are made first, followed by mechanical analysis of the structure. Fundamental to the accuracy of the mechanical analysis is a new planar beam finite element. The effects of plasticity in concrete, and plasticity and viscous creep in steel are taken into consideration. The properties of concrete and steel along with the values of their thermal and mechanical parameters are taken according to the European standard ENV 1992-1-2 (1995). The comparison of our numerical and full-scale experimental results shows that the proposed mechanical and 2D thermal computational procedure is capable to describe the actual response of reinforced concrete beam structures to fire.

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep (건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동)

  • Ahn, Sung-Soo;Sung, Won-Jin;Kang, Byeong-Su;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.109-116
    • /
    • 2006
  • An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Variations of Column Shortening with Parameters (매개변수에 따른 기둥축소량 변화에 관한 연구)

  • 정은호;김형래
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

Analysis of Measured Mean Compressive Strength of Ready-Mixed Concrete by Season in Gangwon Area (강원지역 레미콘의 계절별 평균압축강도의 통계특성 분석)

  • Yun, Kyong-Ku;Park, In-Jung;Hong, Young-Ho
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.109-116
    • /
    • 2013
  • In this study the compressive strength data were collected from ready­mix concrete plants, and the analysis result showed that when using A­D test the concrete of 24MPa is suitable than that of 21MPa for normal distribution. The prediction formula for average compressive strength were proposed to $f_{cu}=f_{ck}+4(MPa)$. When comparing the proposed equations and existing relationship, the estimation variations of elastic modulus and creep modulus were not significant. The proposed equation confirmed that there was no effect to the influence function for modulus of elasticity and creep. Therefore, it was concluded that the proposed equation could replace the exiting interaction formula.

  • PDF