• Title/Summary/Keyword: creep effect

Search Result 363, Processing Time 0.04 seconds

A Study on Creep Crack Growth Properties of 308 SS for FFS Evaluation of High Temperature Components (고온설비의 FFS평가를 위한 308 스테인리스강의 크리프 균열성장 재료물성에 대한 연구)

  • Lee, Kyung-Yong;Baek, Un-Bong;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2002
  • For fitness-for-service evaluation of high temperature plant components with defects, crack growth life must be assessed properly as indicated in the recent draft of API 579 code. Type 308 stainless steel has been widely used as a field weld material in the petrochemical industry. In this study, creep crack data of type 308 stainless steel are collected and re-analyzed using $C_t$ as a characterizing fracture parameter. A unique da/dt versus $C_t$ relationship was obtained despite of difference of creep deformation constant of the reviewed materials and specimen geometry of the tested specimens. The obtained results can be employed for crack growth life assessment and fitness-for-service evaluation for the cracks in high temperature components. It is also argued that since the effect of creep properties and other material variability on the creep crack growth behavior would be minor the obtained model may be applied for most of the 308 stainless steels.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Effect of Saccharides on Texture and Retrogradation of Acorn Starch gels (도토리 전분 겔의 텍스쳐와 노화에 미치는 당류의 영향)

  • Lee, Hyang-Aee;Kim, Nam-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.803-810
    • /
    • 1998
  • The mechanical and thermal properties of solutions of acorn starch were investigated, to determine the effect of sucrose on the retrogradation. The contents of moisture and amylose of purified acorn starch was 9.35, 27% respectively. From the moecular weight distribution, Mw and Mn of acorn starch were 1,220,432 and 137,201 relatively and the polydispersity of acorn starch was 8.8952. The creep compliance of acorn starch with and without sucrose were decreased with increasing sucrose concentration in the short term. The temperatures of DSC curve of 15% acorn starch solution containg sucrose shifted slightly to higher temperatures with increasing sucrose content. The enthalpy change associated with the gelatinization was increased with increasing sucrose content. After 7 days storage, the creep compliance of acorn starch gel with sucrose were shown higher than acorn starch gel. Regelatinization enthalpy of acorn starch/sucrose/water system was decreased with increasing sucrose content and increased with storage time. In addition, the characteristic temperatures such as onset temperature, peak temperature and conclusion temperature was increased by sucrose addition. Retrogradation ratio decreased with increasing sucrose content, thus sucrose inhibit retrogradation in the long term. Sucrose acts as an antistaling reagents and retatards the retrogradation.

  • PDF

Effect of Nursing Frequency and Creep Feed Provision on the Milk and Feed Intake and Performance of Zero Day Weaned Piglets Reared on a Dummy Sow

  • Weng, R.C.;Edwards, S.A.;Hsia, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1540-1546
    • /
    • 2009
  • One hundred and forty-four piglets with an average birth weight of 1,672${\pm}$13.4 g were used to evaluate different feeding strategies for piglets reared from birth on a dummy sow. A 3${\times}$2 factorial experiment compared three nursing frequencies (1, 3 or 6 h intervals) and two feeding regimes (milk only, or milk combined with access to creep feed and water). The piglets which were nursed at one hour intervals had the lightest body weights at all days, and the poorest combined milk and creep feed dry matter conversion efficiency to piglet body weight gain in the second week. Piglets which were nursed at 3 h intervals had the heaviest body weight at day 15 and 22, but those nursed at 6 h intervals achieved similar body weight by days 29 (milk withdrawal) and 36. Piglets offered creep feed were observed to wean themselves before cessation of milk availability, and the timing of this self-weaning depended on the nursing frequency. The piglets nursed at one hour intervals weaned themselves between day 22 and day 29, those nursed at 3 h intervals weaned themselves between day 15 and day 22, whilst those nursed at 6 h intervals weaned themselves between day 8 and day 15. The piglets which were nursed at 6 h intervals had the highest total dry matter intake in weeks 3 and 4 when fed with milk, creep feed and water but not when fed milk only. They consequently had the poorest dry matter conversion efficiency in the fourth week and overall when fed with milk, creep feed and water, but not when fed milk only. It is concluded that the optimal management routine under these conditions is a 3 h nursing cycle with provision of supplementary creep feed and water.

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

The Effect of Pd addition on Mechanical Properties at High Temperature of Mg-4Al-2Sn Alloy (Mg-4Al-2Sn 합금의 고온 기계적 특성에 미치는 Pd첨가의 영향)

  • Yim, Si-On;Kang, Byoung-Soo;Cho, Dae-Hyun;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.37 no.4
    • /
    • pp.101-107
    • /
    • 2017
  • This study investigated the effect of Pd on the microstructure, tensile and creep properties of Mg-4Al-2Sn (AT42) alloy at a high temperature for transportation-related industrial applications. AT42-xPd (x = 0, 1 and 2 wt. %) alloys were prepared using a permanent mould casting method. The microstructures of the as-cast alloys were characterized by the presence of the intermetallic phases $Mg_{17}Al_{12}$, $Mg_2Sn$ and $Al_4Pd$. The addition of Pd was found to improve the tensile properties of AT42 at room and at elevated temperatures, and to increase the creep resistance at elevated temperatures. A small amount of Pd could markedly improve the tensile properties of AT42 by means of grain-refinement and the dispersion of secondary phase strengthening. Moreover, the thermally stable phase $Al_4Pd$ effectively improves the creep resistance of AT42 due to the strengthened grain boundaries and the suppressed formation of $Mg_{17}Al_{12}$.