• Title/Summary/Keyword: creep and shrinkage test

Search Result 69, Processing Time 0.024 seconds

Time-dependent properties of lightweight concrete using sedimentary lightweight aggregate and its application in prestressed concrete beams

  • Chen, How-Ji;Tsai, Wen-Po;Tang, Chao-Wei;Liu, Te-Hung
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.833-847
    • /
    • 2011
  • We have developed a lightweight aggregate (LWA) concrete made by expanding fine sediments dredged from the Shihmen Reservoir (Taiwan) with high heat. In this study, the performance of the concrete and of prestressed concrete beams made of the sedimentary LWA were tested and compared with those made of normal-weight concrete (NC). The test results show that the lightweight concrete (LWAC) exhibited comparable time-dependent properties (i.e., compressive strength, elastic modulus, drying shrinkage, and creep) as compared with the NC samples. In addition, the LWAC beams exhibited a smaller percentage of prestress loss compared with the NC beams. Moreover, on average, the LWAC beams could resist loading up to 96% of that of the NC beams, and the experimental strengths were greater than the nominal strengths calculated by the ACI Code method. This investigation thus established that sedimentary LWA can be recommended for structural concrete applications.

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

An Experimental Study on the Mechanical Properties of Hwangtoh Concrete (황토콘크리트의 역학적 특성에 대한 실험적 연구)

  • Tak, So-Young;Hong, Geon-Ho;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.689-692
    • /
    • 2008
  • The purpose of this study was to analyze mechanical properties through an experiment of concrete that reinforced PET fiber, blast furnace slag and Hwangtoh. As admixture that is substitute material of cement for environmental concrete development In order to measure compressive strength, the experiment has executed to concrete, Hwangtoh concrete and a mixture specimen of Hwangtoh and PET reinforcement fiber. Also, creep and drying shrinkage experiment have executed to analyze long-term quality of specimens. Test results, compressive strength by age was not much of difference as a substitute, however, compressive strength of HTC specimen was the strongest of the three specimens. In the case of creep and drying shrinkage, long-term quality of HTC specimen was distinguished.

  • PDF

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

A Study on the Long-term Behavior of Concrete (콘크리트 장기특성 실험연구)

  • 박홍석;이장화;김긍환;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.187-190
    • /
    • 1994
  • During the initial design phases for prestressed concrete structures, the mecessary information concerning the physical properties of the hardened concrete such as creep, drying shrinkage, modulus of elasticity, and Poisson's ratio are obtained from design assumptions or accepted standards. But these assumptions may not totally reflect the actual long-term behavior of the concrete. So they may be of limited use in predicting the actual behavior. The purpose of this paper is to describe the test procedures and methods of evaluation which were used during the long-term study.

  • PDF

A Study on High Temperature properties of Kaolin-Phosphate-Water Systems (카올린-인산염-물계의 고온특성에 관한 연구)

  • 박금길;장영재
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 1981
  • This study deals with the high temperature (600-135$0^{\circ}C$) properties of Kaolin-Phosphate-Water systems. Phosphoric acid, mono aluminum phosphate, mono ammonium phosphate, the mixture of phosphoric acid and mono aluminum phosphate, and the mixture of phosphoric acid and mono ammonium phosphate were used to characterize the M.O.R of the systems with to quantity of phosphates and firing temperature. Firing shrinkage, creeptest, DTA, TGA, and X-ray diffraction patterns were also measured in order to investigate the factors of strengthening. The resules of the experiments are as follows: 1. Linear shrinkage of kaolin-phosphate systems become larger as the firing temperature rise, and generally in the firing temperature of $600^{\circ}C$ and 100$0^{\circ}C$ the test pieces with phosphate binder show larger then Kaolin-Water system in linear shrinkage and reversed trends were found at 120$0^{\circ}C$ and 135$0^{\circ}C$. 2. Cold M.O.R. of kaolin-phosphate systems show higher trends in strength as the firing temperature rise. Comparing M.O.R. of test pieces after firing at 135$0^{\circ}C$, the mixture of phosphoric acid-mono aluminum phosphate, and phosphoric acid mono ammonium phosphate systems show higher strength than kaolin-mono aluminum phosphate system which widely used, and it shows highest strength when the mole ratio of phosphoric acid and mono ammonium phosphate is 1:1 among the test pieces of kaolin-phosphate systems. 3. The refractoriness of kaolin-phosphate systems are more deteriorated than Kaolin-Water system, and generally, the more addition of phosphate, the lower the refractoriness, however in the range of 4-8% phosphate addition, the difference of the fusion temperature is about 7$0^{\circ}C$. 4. The test pieces of T1 and T2 in creep test were same or even higher than kaolin-water system when 6% of phosphoric acid-mono ammonium phosphate was added to kaolin. 5. In case where the phosphoric acid-mono ammonium phosphate was added to kaolin in mole ratio 1:1 the cold M.O.R., after firing at 135$0^{\circ}C$, refractoriness and $T_2$ in creep test show better results than kaolin-mono-aluminum phosphate system which is widely used. 6. Phosphoric acid and mono ammonium phosphate react with kaolin in temperature over 100$0^{\circ}C$, and it forms aluminum phosphate.

  • PDF

Durability Test for the Expansion Joint of High-Speed Railway Bridge (고속철도 교량 신축이음장치의 내구성 실험)

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.894-899
    • /
    • 1998
  • To absorb the deformation of live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction authority.

  • PDF

고속철도 교량 신축이음장치의 내구성 실험

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.24-29
    • /
    • 1998
  • To absorb the deformation of ,external live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction Authority.

  • PDF

New Rehabilitation Method of Prestressed Concrete Rahmen Bridge with a Hinge at Midspan (프리스트레스트 콘크리트 활절 라멘교의 신보강공법 (상진대교구교적용))

  • 이원표;하성욱;김성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.979-984
    • /
    • 2001
  • The Sang-Jin bridge constructed by the Free Cantilever Method in 1985 is 4-span concrete rahmen bridge with a hinge at midspan. Due to the effect of creep, shrinkage of concrete and relaxation of tendon, the Sang-Jin bridge exposed the excessive displacement at midspan with the passage of time. In order to improve the load-carrying-capacity and durability of the bridge, needs to repair and rehabilitate the structure emerged. New rehabilitation methods were applied such as external prestressing of concrete box, application of pier pre-camber and steel truss jacking. Structural analysis and several tests including static load test, dynamic load test and ambient vibration test were executed to verify the improvement. The test result showed that the displacement of the midspan was improved by 10mm and it was verified that the stiffness of the bridge was increased. Totally, the load-carrying-capacity of Sang-Jin bridge was increased at least 1.56times which was attributed to the new rehabilitation method.

  • PDF

A Study on the Mechanical Properties of Carbon Fiber Reinforced Cement Composite Impregnated in Polymer (폴리머 함침 탄소섬유보강 시멘트 복합체의 역학적 특성에 관한 연구)

  • ;;Lee, Burtrand. I.
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.107-118
    • /
    • 1992
  • In order to examine the mechanical properties of carbon fiber reinforced cement composites with silica powder PAN - based carbon fiber and Pitch- based carbon fiber, and polymer impregnators experimental studies on CFRC impregnated in polymer were carried out. The effects of types, length, and content~i of carbon fibers and matrices of fresh and hardened CFRC impregnated in polymer were examined. The test results show that compressive, tensile, and flexural strength of CFRC impregnated in polymer were much more iriCreased than those of air cured and autodaved CFIIC CFRC impregnated in polymer was also considerably effective in improving toughness, freeze thaw resistance, loss of shrinkage, and creep resist ance, compared with air cured and autoclaved CFRC.