• 제목/요약/키워드: credit scoring

검색결과 44건 처리시간 0.021초

Robust Design of Credit Scoring System by the Mahalanobis-Taguchi System

  • Su, Chao-Ton;Wang, Huei-Chun
    • International Journal of Quality Innovation
    • /
    • 제5권2호
    • /
    • pp.1-16
    • /
    • 2004
  • Credit scoring is widely used to make credit decisions, to reduce the cost of credit analysis and enable faster decisions. However, traditional credit scoring models do not account for the influence of noises. This study proposes a robust credit scoring system based on Mahalanobis-Taguchi System (MTS). The MTS, primary proposed by Taguchi, is a diagnostic and forecasting method using multivariate data. The proposed approach's effectiveness is demonstrated by using real case data from a large Taiwanese bank. The results reveal that the robust credit scoring system can be successfully implemented using MTS technique.

Research on the E-Commerce Credit Scoring Model Using the Gaussian Density Function

  • Xiao, Qiang;He, Rui-chun;Zhang, Wei
    • Journal of Information Processing Systems
    • /
    • 제11권2호
    • /
    • pp.173-183
    • /
    • 2015
  • At present, it is simple to the electronic commerce credit scoring model, as a brush credit phenomenon in E-commerce has emerged. This phenomenon affects the judgment of consumers and hinders the rapid development of E-commerce. In this paper, that E-commerce credit evaluation model that uses a Gaussian density function is put forward by density test and the analysis for the anomalies of E-commerce credit rating, it can be fond out the abnormal point in credit scoring, these points were calculated by nonlinear credit scoring algorithm, thus it can effectively improve the current E-commerce credit score, and enhance the accuracy of E-commerce credit score.

Privacy-Preserving Credit Scoring Using Zero-Knowledge Proofs (영지식 증명을 활용한 프라이버시 보장 신용평가방법)

  • Park, Chul;Kim, Jonghyun;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제29권6호
    • /
    • pp.1285-1303
    • /
    • 2019
  • In the current credit scoring system, the credit bureau gathers credit information from financial institutions and calculates a credit score based on it. However, because all sensitive credit information is stored in one central authority, there are possibilities of privacy violations and successful external attacks can breach large amounts of personal information. To handle this problem, we propose privacy-preserving credit scoring in which a user gathers credit information from financial institutions, calculates a credit score and proves that the score is calculated correctly using a zero-knowledge proof and a blockchain. In addition, we propose a zero-knowledge proof scheme that can efficiently prove committed inputs to check whether the inputs of a zero-knowledge proof are actually provided by financial institutions with a blockchain. This scheme provides perfect zero-knowledge unlike Agrawal et al.'s scheme, short CRSs and proofs, and fast proof and verification. We confirmed that the proposed credit scoring can be used in the real world by implementing it and experimenting with a credit score algorithm which is similar to that of the real world.

Mining Association Rules of Credit Card Delinquency of Bank Customers in Large Databases

  • Lee, Young-Chan;Shin, Soo-Il
    • Journal of Intelligence and Information Systems
    • /
    • 제9권2호
    • /
    • pp.135-154
    • /
    • 2003
  • Credit scoring system (CSS) starts from an analysis of delinquency trend of each individual or industry. This paper conducts a research on credit card delinquency of bank customers as a preliminary step for building effective credit scoring system to prevent excess loan or bad credit status. To serve this purpose, we use association rules as a rule generating data mining technique. Specifically, we generate sets of rules of customers who are in bad credit status because of delinquency by association rule mining. We expect that the sets of rules generated by association rule mining could act as an estimator of good or bad credit status classifier and basic component of early warning system.

  • PDF

Mining Association Rules of Credit Card Delinquency of Bank Customers in Large Databases

  • Lee, Young-chan;Shin, Soo-il
    • Proceedings of the KAIS Fall Conference
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.149-154
    • /
    • 2003
  • Credit scoring system (CSS) starts from an analysis of delinquency trend of each individual or industry. This paper conducts a research on credit card delinquency of bank customers as a preliminary step for building effective credit scoring system to prevent excess loan or bad credit status. To serve this purpose, we use association rules that ore generating method. Specifically, we generate sets of rules of customers who are in bad credit status because of delinquency by using association rules. We expect that the sets of rules generated by association rules could act as an estimator of good or bad credit status classifier.

  • PDF

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • 제16권4호
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

Building credit scoring models with various types of target variables (목표변수의 형태에 따른 신용평점 모형 구축)

  • Woo, Hyun Seok;Lee, Seok Hyung;Cho, HyungJun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.85-94
    • /
    • 2013
  • As the financial market becomes larger, the loss increases due to the failure of the credit risk managements from the poor management of the customer information or poor decision-making. Thus, the credit risk management also becomes more important and it is essential to develop a credit scoring model, which is a fundamental tool used to minimize the credit risk. Credit scoring models have been studied and developed only for binary target variables. In this paper, we consider other types of target variables such as ordinal multinomial data or longitudinal binary data and suggest credit scoring models. We then apply our developed models to real data and random data, and investigate their performance through Kolmogorov-Smirnov statistic.

Neural network rule extraction for credit scoring

  • Bart Baesens;Rudy Setiono;Lille, Valerina-De;Stijn Viaene
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.128-132
    • /
    • 2001
  • In this paper, we evaluate and contrast four neural network rule extraction approaches for credit scoring. Experiments are carried our on three real life credit scoring data sets. Both the continuous and the discretised versions of all data sets are analysed The rule extraction algorithms, Neurolonear, Neurorule. Trepan and Nefclass, have different characteristics, with respect to their perception of the neural network and their way of representing the generated rules or knowledge. It is shown that Neurolinear, Neurorule and Trepan are able to extract very concise rule sets or trees with a high predictive accuracy when compared to classical decision tree(rule) induction algorithms like C4.5(rules). Especially Neurorule extracted easy to understand and powerful propositional if -then rules for all discretised data sets. Hence, the Neurorule algorithm may offer a viable alternative for rule generation and knowledge discovery in the domain of credit scoring.

  • PDF

Credit Scoring Using Splines (스플라인을 이용한 신용 평점화)

  • Koo Ja-Yong;Choi Daewoo;Choi Min-Sung
    • The Korean Journal of Applied Statistics
    • /
    • 제18권3호
    • /
    • pp.543-553
    • /
    • 2005
  • Linear logistic regression is one of the most widely used method for credit scoring in credit risk management. This paper deals with credit scoring using splines based on Logistic regression. Linear splines and an automatic basis selection algorithm are adopted. The final model is an example of the generalized additive model. A simulation using a real data set is used to illustrate the performance of the spline method.

Development of Software for Coarse Classifying

  • Jung, Ki-Mun;Kim, Myung-Cheol;Yum, Joon-Keun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1085-1090
    • /
    • 2006
  • In general, the coarse classifying procedure splits the values of a continuous characteristic into bands and the values of a discrete characteristic into groups of values. Coarse classifying improves the robustness of the credit scoring system but it is complicate and troublesome procedure. Thus, in this paper, we develop a software for coarse classifying by using Visual Basic Language. By using the developed software, we can find the best split easily. Also, this software will help learners to study credit scoring.

  • PDF