• Title/Summary/Keyword: creative thinking process

Search Result 306, Processing Time 0.023 seconds

The Effect of a Creative Thinking-Based Fashion Design Creative Convergence Education Program on Creativity Improvement (창의적 사고에 기반한 패션디자인 창의융합교육 프로그램이 창의성 향상에 미치는 영향)

  • Soyung Im
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.150-165
    • /
    • 2023
  • The purpose of this study is to propose a fashion design creativity convergence education program based on creative thinking that can be effectively used to create a creative fashion design in the fashion education field, and to verify the suitability of this program and its effectiveness in improving creativity. To this end, a fashion design creative convergence program combining divergent thinking and convergence thinking was designed, and an experimental study was conducted among college students in the fashion design department. Creativity evaluation was conducted by evaluating students' creative ability and creativity of fashion design results. In addition, an open survey was conducted to collect learners' opinions on the suitability of the program and the convergence process of divergent and convergent thinking. As a result of this study, it was found that the fashion design creative convergence education program based on creative thinking improves the creative competency of major learners of fashion design and is the learning performance competency in the process of producing creative results. This study is meaningful as it is a basic study that proposes a fashion design education program to foster the creative competency of fashion design majors, and is expected to be used in various ways in the educational field.

Comparison of Problem Finding Ability, Creative Thinking Ability, Creative Tendency, Science Process Skill between the Scientifically Gifted and General Students (과학영재 학생과 일반 학생의 문제 발견력, 창의적 사고력, 창의적 성향, 과학 탐구 능력 비교)

  • Go, Yu-Mi;Yeo, Sang-Ihn
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.624-633
    • /
    • 2011
  • The purpose of this study was to compare problem finding ability, creative thinking ability, creative tendency, and science process skill between the scientifically gifted students and the general students. For this study, problem finding ability test, integrating creativity test, and science process skill test were conducted to the elementary gifted students (n=95) in science and the general students (n=149) at the same school district. The results of this study were as follows: The mean scores of problem finding, creative thinking, creative tendency, and science process skill of the gifted students were statistically higher than the general students. The problem finding ability had partially weak correlation with sub-domains of the creative thinking ability, creative tendency, and science process skill. Findings suggest that there are needs of further study about factors affecting problem finding and considering the degree of structure of problem situation.

Development of Basic Design Education Materials Incorporating Critico(-Creative) Thinking: Egg Drop Device Design (비판(-창의)적 사고를 접목한 기초 설계 교육 자료 개발: 계란 낙하 기구 설계)

  • Park, Sang Tae;Ku, Jin Hee
    • Journal of Engineering Education Research
    • /
    • v.25 no.6
    • /
    • pp.58-68
    • /
    • 2022
  • This paper aims to prepare basic design education materials explaining the design process of egg drop device by incorporating critico(-creative) thinking. To this end, in this paper, by utilizing the creative problem solving process and the elements and standards of critical thinking, 'the five-step creative engineering design education guidelines' have been prepared so that engineering freshmen can effectively participate in engineering design projects without major knowledge. We would like to apply them to the egg drop device design. The egg drop device design, which is experiment to make and drop a drop device that can protect an egg from breaking when it is dropped freely from high places, is an engineering design project that is widely used not only in elementary, middle and high school science events but also in engineering education courses under the name of 'stunt egg'. Perhaps the basic design education material on the egg drop device design incorporating critico(-creative) thinking in this paper will contribute to incorporating critico(-creative) thinking into engineering education, as well as to achieving the educational goals of the basic design subject.

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.

A Basic Research on the Method for Applying Mapping Technique to Basic Design Education (기초디자인 교육에 있어서 매핑기법의 활용 방법에 관한 기초연구)

  • Prak, Eung-Bum;Hong, Jung-Pyo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2007.05a
    • /
    • pp.67-69
    • /
    • 2007
  • Customary way of thinking may be the most major stumbling block to creative thinking in basic design education in the information and network era. The basic design education was used to be based on personal experience or subjective ideas, but these days, the role of divergent thinking and convergent thinking which provide the basis of creative techniques has been closely examined. Going beyond a divergent thinking and directly starting a convergent thinking means bypassing the design process of the existing basic design education. Though preceding studies considered various creative techniques apart from divergent thinking and convergent thinking, this study presumed that complementing the most typical methods of divergent thinking and convergent thinking may result in the same basic design education effect. So, what approach must be used to the design? The way of thinking needs to change. For that, we try to apply the mapping to basic design education. It must encompass interactive thinking which includes immaterial elements and communication. Divergent thinking can begin with the accurate understanding of current state, and the created current state resolves the design process that needs to be a certain thing. The purpose of this study was to present the method for applying the mapping techniques to basic design education based on divergent and convergent thinking which provides the basis of creative ideas.

  • PDF

Facilitating creative problem solving process as a teaching tool in fashion marketing classrooms

  • Oh, Keunyoung
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.1
    • /
    • pp.72-80
    • /
    • 2019
  • A teaching manual was developed to incorporate the creative problem solving process into a fashion marking course. Students' creativity, problem solving, critical thinking, and analytical thinking are promoted by applying the creative problem solving process systematically to solve authentic business problems experienced by local apparel business owners. This teaching manual is based on the FourSight Model that consists of Clarify, Ideate, Develop, and Implement. Various tools promoting divergent thinking are also utilized in the process. A local fashion business is invited as a problem owner and four resource groups are formed with students based on the results of the Kirton Adaption Innovation Inventory. Each resource group consists of 6-8 students. The creative problem solving process is implemented into a classroom setting as four 75-minutes sessions that are held twice a week for two consecutive weeks. The local fashion business owner will be in presence during the first (Clarify) and last (Implement) sessions. The instructor facilitator meets with the problem owner outside the classroom three times including pre-session client interview, after the second (Ideate) session, and before the third (Develop) session. This modified CPS manual for fashion marketing and merchandising courses provides practical guidelines to work with local fashion businesses while providing students with learning opportunities of the creative problem solving process.

Development of Creative Economy Innovation and Digital Entrepreneurial Ability for Distribution Strategy by using Design Thinking

  • Siwaporn NAKUDOM;Sor sirichai NAKUDOM;Panita WANNAPIROON
    • Journal of Distribution Science
    • /
    • v.21 no.4
    • /
    • pp.11-20
    • /
    • 2023
  • Purpose: 1) develop a learning model involving design thinking to develop creative economy innovation and the characteristics of digital entrepreneurs. 2) evaluate the impact of design thinking on creative economy innovation 3) evaluate the impact of design thinking on digital entrepreneurial ability. Research design, data and methodology: 1) develop a learning model involving design thinking in order to develop creative economy innovation and the characteristics of digital entrepreneurs. 2) Evaluating creative economy innovation involving design thinking. 3) Assessing the characteristics of digital entrepreneurs based on design concepts. Results: 1) the development of a learning model involving design thinking to develop creative economy innovation and digital entrepreneurial competency 2) The students who studied using the learning model involving a design thinking process had the highest overall scores in terms of creative economy innovation 3) The scores for the assessment of digital entrepreneurial activity for the students who studied by using the design thinking learning model were at a high level. Conclusions: The development of the design thinking learning model can encourage students to be able to develop creative economy innovations and to empower digital entrepreneurs' ability for distribution strategy. Educational institutions that would like to succeed in developing creative economy innovative and digital entrepreneurship characteristics with the support of design thinking.

Exploring the Types of Elementary Students' Scientific Creativity According to the Structural Relationship between Creative Process and Product (창의 과정과 산물의 구조적 관계에 따른 초등학생의 과학 창의성 유형 탐색)

  • Kim, Minju;Lim, Chaeseong
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.1
    • /
    • pp.33-49
    • /
    • 2022
  • This study aims to explore, using both quantitative and qualitative data analyzing the structural relationship between creative process and product, the types of elementary students' scientific creativity. For this, 105 fifth-graders responded to a scientific creativity test that assesses creative process and product, and four students who scored the highest were interviewed. In the interview, they were asked about the cognitive process they used in generating the creative product. Then, correlation analysis and structural equation modeling were used, along with the interview data, to type the students. The main findings of the study are as follows. First, the structural equation modeling of creative process and product gave satisfactory results in absolute and incremental fit indexes. Second, among the three components of creative process - knowledge, inquiry skill-observation, and creative thinking skills -, only creative thinking skills had significant effects on creative product. Third, divergent thinking skills had the strongest correlation with the creative product, followed by convergent thinking skills. Associational thinking skills did not have significant correlation. Fourth, elementary students' scientific creativity could be categorized into Creative Type, Useful Type, Original Type, and Non-creative Type, based on their creative product. The Non-creative Type could be further classified into Common Type, Repetitive Type, Non-response Type, Irrelevant Type, and Abstract Type. Fifth, most students used either knowledge or observation in their creative process, making them either Knowledge-oriented Type or Observation-oriented Type. In addition, there were DT Type, DT-CT Type, and DT-CT-AT Type among the students, based on the kinds of creative thinking skills they mainly used in the process. This study provides implications for educators and researchers in scientific creativity education.

Qualitative Analysis of the Creative Design Process of Elementary School Students in STEAM Class (STEAM 수업에서 나타난 초등학생의 창의적 설계 과정 질적 분석)

  • Jeon, Jeong-Hee;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.93-109
    • /
    • 2018
  • The purpose of this study was to analyze the character of the creative design processes that appear at the creative design stage of the design thinking based on STEAM class and what factors affect the creative design process. Students who served as the subjects of this study were 4 elementary school students. We developed the design thinking based on STEAM program to look more specific the creative design process. The project was conducted with a total of 12 sheets of paper materials. The conclusions of this study are as follows. First, the problem solving process of the design thinking based on STEAM classes is not anticipatory and is cyclical and complex. So, teachers should provide sufficient time for students to create and simulate ideas and accept the solving problems through trial and error. Second, Having presented the STEAM class as a practical problem in the real world, there was less fear of students' failure and heightened motivation and enthusiasm. Providing with the real topic and open questions in classrooms can lead to students' voluntary participation in the classroom. Third, In the design thinking based on STEAM class, students develop concrete ideas through visualization courses. The group of students made the best solutions through communication.

A Computer Mediated Design Development System for Design Innovation - the Focus on the Creative Thinking System for Idea Development in Product Design (디자인 혁신을 위한 창조적 발상지원 시스템 연구)

  • 우흥룡
    • Archives of design research
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2001
  • This paper focuses on the idea development as a creative thinking process for design innovation. The process of thinking has the thinking structures of abduction and transformation. After we had studied the design thought, we found a structure of a thinking system, and created a creative thinking model with this. Using job analysis, we examined the duster of design jobs, which form the design process, and verified the thinking model. The findings suggest that our idea development has the creative process not only of divergent thinking and convergent one, but also of transformation in design. In same time, the design thinking shows their pattern of transition from abstract concept to concrete object. Between the design jobs, idea development shows higher difficulty than other jobs - marketing, product planning and follow-up. Combining the D-T-C (Divergent-Transformation-Convergent) thinking with abstract-concrete thinking, we designed a DFD(data flow diagram) for an early model of computer mediated thinking system (CMTS). This has implications for design support.

  • PDF