• Title/Summary/Keyword: crankshaft-journal bearing

Search Result 43, Processing Time 0.023 seconds

Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft by n Finite Bearing Model (유한 베어링 모델링을 이용한 왕복동형 압축기 크랭크축의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.402-410
    • /
    • 2002
  • In this study, a hydrodynamic analysis of the reciprocating compressor crankshaft considering a finite bearing modelling of the journal bearings used in small refrigeration compressors is performed. In the problem formulation of the compression mechanism dynamics, all corresponding hydrodynamic forces and moments are considered using the finite bearing analysis in order to determine the crankshaft trajectory at each step. The solution of the Reynolds' equation is determined numerically using a finite difference method and a Newton-Raphson procedure was employed in solving the dynamic equations of the crankshaft. The crankshaft orbits fur the finite bearing model and short bearing theory were used to compare the effect of the hydrodynamic farces of the journal bearings on the dynamic and lubrication characteristics of the crankshaft-journal bearing system. Results show that the finite bearing model for the journal bearings must be considered in calculating for the accurate dynamic characteristics of the reciprocating compressor crankshaft.

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

Aeration Efface on the Oil Supply System of Engine Crankshaft Bearing (Aeration이 엔진 크랭크샤프트 베어링 오일공급 시스템에 미치는 영향)

  • 윤정의
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.119-124
    • /
    • 2004
  • Engine bearing system is generally affected by aeration. In this paper, the aeration effects on the engine crankshaft bearing system were studied. To do this, unsteady oil flow analysis on the engine crankshaft oil circuit system was carried out. And aeration effects on the bearing system were simulated to figure out lubrication characteristics of the each bearing such as oil flow rate, minimum oil film thickness, friction loss and increase of oil temperature.

A Study on Design of Crankshaft Bearing System (크랭크샤프트 베어링시스템 설계 연구)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Two kinds of crankshaft oil supply system which were called continuous and discontinuous oil sup-ply system have recently been adopted in engine developing process. In order to clarify the lubrication characteristics for theses systems, in this paper, the comparison studies on supplied oil temperature, pressure, aspect ratio of bearings, and radial clearance were carried out for the main and the connecting rod bearing using computational fluid dynamic analysis.

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

Load Characteristics of Engine Main Bearing : Comparison Between Theory and Experiment

  • Cho, Myung-Rae;Oh, Dae-Yoon;Ryu, Seung-Hyuk;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1095-1101
    • /
    • 2002
  • The load characteristics of engine main bearing are very important in the design of crankshaft and engine block. The stiffness of crankshaft and block, or the optimal dimension of the bearing can be determined according to the load level. This paper presents the load characteristics of engine main bearing. Two components of the main bearing load are measured during engine firing and motoring. The vertical and horizontal load components are measured by using the dynamic load cell mounted in each main bearing cap bolt. The measured main bearing loads are compared with calculated results by using the statically determinate method. The theoretical results, provided in this study, agreed well with the experimental results. The presented results are very useful for achieving optimal design of engine.

An Experimental Study of the Friction and Temperature Characteristics of Engine Crankshaft Bearings (엔진 크랭크새프트 베어링의 마찰 및 온도 특성에 대한 실험적 연구)

  • 조명래;문호지;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.44-49
    • /
    • 1995
  • Friction characteristic of an engine crankshaft bearing is affected by revolution speed, applied loads, and viscosity of lubrication. So, experimental investigation is required to observe the friction characteristics using these factors. Hydraulic cylinder, servo controller system which can be modified the applied load, and test rig for the observation of the characteristics of engine crankshaft bearings were designed and fabricated, and some experiments were performed. Friction torque, journal locus and circumferential temperature variation of crankshaft bearing were measured according to applied load, revolution speed, and oil inlet temperature.

Dynamic Behavior Analysis of a Orbiting Scroll in Scroll Compressor with Tangential Leakage (접선방향의 누설이 고려된 스크롤 압축기 선회 스크롤의 동적 거동 해석)

  • 김태종;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.41-46
    • /
    • 1996
  • For a vertical type crankshaft-journal bearing system used in scroll compressor, nonlinear transient response analysis is applied includung nonlinear fluid film reaction forces of journal beatings. By a connected behavior analysis of crankshaft and orbiting scroll, the radial clearance of scroll wraps is calculated. Considering tangential leakage for this clearance, a coupled analysis model for leakage and dynamic behavior of the orbiting scroll is made, and analyzed by iterative calculation. By regarding clearances of main, sub bearing of crankshaft and orbiting scroll shaft bearing clearance as design parameters, the radial clearance of scroll wraps is analyzed.

  • PDF

A Study on the Engine Lubrication System Analysis Adapting Discontinuous Oil Supply Crankshaft System (불연속 오일공급 크랭크샤프트 시스템을 채택한 엔진 윤활시스템의 해석)

  • 윤정의
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • This paper presents unsteady oil flow behaviors in the engine lubrication network to clarify the differences between continuous and discontinuous oil supply crankshaft system. Using commercial network analysis program, Flowmaster2, engine lubrication network system analysis were carried out. And effects of crankshaft speed and supplied oil pressure on pressure fluctuation in oil groove and oil flow rate to each bearing were analyzed.