• Title/Summary/Keyword: cracks parameters

Search Result 334, Processing Time 0.024 seconds

Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계)

  • Lee, Chun-Yeol;Chae, Yeong-Seok;Gwon, Jae-Do;Nam, Uk-Hui;Kim, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

ACOUSTIC EMISSION BEHAVIOR DURING STRESS CORROSION CRACKING OF INCONEL 600

  • Sung, Key-Yong;Cho, Sang-Jin;Kim, Bong-Hyun;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.145-150
    • /
    • 1996
  • Acoustic Emission (AE) technique was applied to stress corrosion cracking of Inconel 600 to investigate the AE capability of detecting crack growth and to obtain the relation between AE characteristics and crack mechanism. The specimens were heat-treated in two conditions (600$^{\circ}C$ for 30 hrs or 700 $^{\circ}C$ for 1 hr) and undergone CERT at two extension rates ( 2.5${\times}$10$^{-5}$ or 1.25${\times}$10$^{-4}$(mm/s)). It was found that the AE peak amplitude from plastic deformation was generally smaller than about 48dB (0.25mV), while Intergranular stress corrosion cracking (IGSCC) and ductile fracture produced higher values of 49 to 70dB (0.3mV to 3mV). The slopes of cumulative amplitude distribution (b-values) were linearly dependent on IGSCC susceptibility and the higher the susceptibility, the smaller the b-value. The monitoring of combined AE parameters such as event rate, amplitude, count and energy can provide effective means to clearly identify the transition from crack initiation and small crack growth to rapid growth of dominant cracks.

  • PDF

Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting (한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정)

  • 한천구;한민철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.

Experimental Study on the On-line Monitoring of Offshore Structures Using Acoustic Emission Technology (음향방출법을 이용한 해양구조물의 온라인 감시에 관한 실험적 연구)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.73-82
    • /
    • 1999
  • In this research, an experimental study is presented to check the possibilities of offshore structures monitoring using AE techniques. The underwater transducer and preamplifier are fabricated. And, it is proved that this unit can be used for the detection of AE in offshore structures. Wave propagation studies have shown that supplementary attenuations due to seawater are significantly reducing the detection range of the sensors. It excludes the possibility of offshore structures monitoring with a small number of sensors. We conclude that AE waves would be correctly detected for a path of about 3m. Tubular joints have been tested in air and underwater using simulated elastic wave. Ability of AE techniques to detect and locate cracks early in their evolution has been demonstrated. Several parameters of AE generation have been set in evidence. It has also been shown that crack development goes with an increase of AE parameter. Conclusively, it is shown that AE techniques can provide practical alternatives to present methods being used for inspection of deep-water offshore structures undergoing structural degradation due to fatigue crack growth.

  • PDF

Fatigue Crack Growth Properties of Friction Stir Welded Dissimilar Aluminum Alloys (이종알루미늄합금 FSW 접합부의 피로균열진전 특성)

  • Lee, Won-Jun;Lee, Hyo-Jae;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • The presence of a crack can increase the local stress or strain, which can cause inelastic deformation and significantly reduce the life of a component or structure. Therefore, in this study, the fatigue crack growth (FCG) behaviors of friction stir welded Al 2024-T3 and Al 7075-T6 specimens were examined, with fatigue cracks growing parallel to the dynamically recrystallized zone at variable ${\Delta}K$ values and an R ratio of 0.3. In addition, the FCG values of the base metal Al 2024-T3 and Al 7075-T6 were tested under the same conditions and parameters as comparative groups. The results showed that compared with the base metal Al 2024 specimen, which had the best fatigue property, the welded specimen had only 88% of the fatigue cycles.

Prediction of the Rupture of Circular Sections of Reinforced Concrete and Fiber Reinforced Concrete

  • Adjrad, A.;Bouafia, Y.;Kachi, M.S.;Ghazi, F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.373-381
    • /
    • 2016
  • As part of this study, has been developed a numerical method which allows to establish abacuses connecting the normal force with bending moment for a circular section and therefore to predict the rupture of this type of section. This may be for reinforced concrete (traditional steel) or concrete reinforced with steel fibers. The numerical simulation was performed in nonlinear elasticity up to exhaustion of the bearing capacity of the section. The rupture modes considered occur by plasticization of the steel or rupture of the concrete (under compressive stresses or tensile stresses). Regarding the fiber-reinforced concrete, the rupture occurs, usually, by tearing of the fibers. The behavior laws of the different materials (concrete and steel) correspond to the real behavior. The influence of several parameters was investigated, namely; diameter of the section, concrete strength, type of steel, percentage of reinforcement and contribution of concrete in tension between two successive cracks of bending. A comparison was made with the behavior of a section considering the conventional diagrams of materials; provided by the BAEL rules. A second comparative study was performed for fibers reinforced section.

Electrical Conductivity of Dielectric on WEDM Characteristics (WEDM 가공특성에 대한 방전액의 전기전도율의 영향)

  • Kim, Chang-Ho;Yeo, Hong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1800-1808
    • /
    • 2003
  • This work deals with the electrical conductivity of dielectric on output parameters such as metal removal rate and surface roughness value of a carbon steel(SM25C) and sintered carbides cut by wire-electrical discharge machining(W-EDM). Dielectric has several functions like insulation, ionization, cooling, the removal of waste metal particles. The presence of minute particles(gap debris) in spark gap contaminates and lowers the breakdown strength of dielectric. And it is considered that too much debris in spark gap is generally believed to be the cause of arcing. Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a lower metal removal rate because the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. Debris were analyzed also through scanning electron microscopy(SEM) and surface roughness tester. Micro cracks and some of electrode material are found on the workpiece surface by energy dispersive spectrometer(EDS).