• 제목/요약/키워드: cracking pattern

검색결과 99건 처리시간 0.026초

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구 (Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge)

  • 최세진;최정욱;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.19-26
    • /
    • 2014
  • 콘크리트 방호벽 및 중앙분리대는 교량의 부속시설이지만, 슬립폼 시공과 넓은 비표면적으로 인해 초기재령 균열이 발생하기 쉽다. 본 연구에서는 대형 교량의 방호벽과 중앙분리대 콘크리트의 외관조사 및 비파괴실험을 수행하여 균열의 원인과 발생 균열의 패턴을 분석하였다. 이를 위해 시공기간을 고려하여, 건조수축, 수화열 해석이 수행되었으며, 현장의 환경조건을 고려하여 소성수축 특성을 평가하였다. 평가결과 대상구조물의 균열 원인은 철근위치에 따른 소성침하균열, 소성수축 및 건조수축에 의한 복부균열, 재료분리에 따른 상부균열로 추정할 수 있었다. 또한 균열원인과 발생 패턴을 도식화하였으며, 시공 및 재료분야에서 균열제어대책을 제안하였다. 해상위 교량에 설치하는 중앙분리대 및 방호벽 콘크리트는 환경조건 (풍속, 온도, 습도)에 매우 민감하여 초기재령균열이 쉽게 발생하므로 재료선택 및 시공방법에 신중을 기해야 한다.

CRCP의 초기거동 및 온도패턴에 관한 시험적 연구 (An Experimental Study on the Early-Age Behavior and Temperature Pattern of CRCP)

  • 조대호;서영찬;김연복;남영국
    • 대한토목학회논문집
    • /
    • 제14권2호
    • /
    • pp.299-305
    • /
    • 1994
  • 연속철근 콘크리트포장(CRCP)의 공용성 추적조사를 위한 시험포장이 판교-구리간 고속도로에 시공되어 지금까지 2년간의 초기 공용성 조사가 진행되었다. 본 고에서는 본 시험포장의 초기재령 거동 및 온도변화 특성을 분석하였고 그 결과를 미국 휴스턴에서 실시된 유사한 시험포장에 대한 결과와 비교하였다. 연구 결과 판교-구리 시험포장은 초기균열의 발생패턴 측면에서 휴스턴 시험포장보다 대체적으로 좋은 결과를 보여주었다. 또한 초기균열의 억제 측면에서 2종 시멘트가 1종에 비해, 그리고 오후 포설이 오전 포설보다 효과적인 것으로 보여진다.

  • PDF

형상인식법을 이용한 음향방출신호의 분류 (Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis)

  • 주영상;정현규;심철무;임형택
    • 비파괴검사학회지
    • /
    • 제10권2호
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF

Numerical and Experimental Evaluation of Tensile Failure in Continuous Fiber Reinforced Ceramic Composite

  • Kwon, Oh Heon;Park, Keyoung Dong;Watanabe, Katsuhiko
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.23-27
    • /
    • 2003
  • Recently, continuous fiber reinforced ceramic composite(CFCC) has attracted attention to a number of engineers because of its significant benefit for several industrial area. This work was conducted to provide a basic characteristic of CFCC for tensile loading condition. The numerical analysis by general purpose finite element program was accomplished and compared with an experimental tensile test. The stress strain curves were expressed well by the numerical analysis and the first matrix cracking stress was in accordance with that of the experimental result. Moreover, fracture pattern was shown by kill command graphically.

이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구 (A Study on Reliability of Solder Joint in Different Electronic Materials)

  • 신영의;김경섭;김형호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향 (Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites)

  • 김인호;김규용;이상규;손민재;김경태;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

레이디얼 압출에서 플랜지의 성형한계 (The Forming Limit of Flange in the Radial Extrusion)

  • 고병두;장동환;최호준;임중연;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.