• Title/Summary/Keyword: cracking model

Search Result 615, Processing Time 0.025 seconds

Evaluation of 4.75-mm Nominal Maximum Aggregate Size (NMAS) Mixture Performance Characteristics to Effectively Implement Asphalt Pavement System (4.75 mm 공칭 최대 골재 치수 아스팔트 혼합물의 효과적인 포장 시스템 적용을 위한 공용성 특성 평가 연구)

  • Chun, Sanghyun;Kim, Kukjoo;Park, Bongsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • PURPOSES : This study primarily focused on evaluating the performance characteristics of 4.75-mm nominal maximum aggregate size (NMAS) asphalt mixtures for their more effective implementation to a layered flexible pavement system. METHODS : The full-scale pavements in the FDOT's accelerated pavement testing (APT) program, including 4.75-mm mixtures at the top with different thicknesses and asphalt binder types, were considered for the faster and more realistic evaluation of the rutting performance. The results of superpave indirect tensile (IDT) tests and hot-mix asphalt fracture mechanics (HMA-FM) based model predictions were used for cracking performance assessments. RESULTS : The results indicated that the rutting performance of pavement structures with 4.75-mm mixtures may not be as good as to those with the typical 12.5-mm mixtures, and pavement rutting was primarily confined to the top layer of 4.75-mm mixtures. This was likely due to the relatively higher mixture instability and lower shear resistance compared to 12.5-mm mixtures. The energy ratio (ER) and HMA-FM based model performance prediction results showed a potential benefit of 4.75-mm mixtures in enhanced cracking resistance. CONCLUSIONS : In relation to their implementation, the best use of 4.75-mm mixtures seem to be as a surface course for low-traffic-volume applications. These mixtures can also be properly used as a preservation treatment that does not necessarily last as long as 12.5-mm NMAS structural mixes. It is recommended that adequate thicknesses and binder types be considered for the proper application of a 4.75-mm mixture in asphalt pavements to effectively resist both rutting and cracking.

Development of Pavement Distress Prediction Models Using DataPave Program (DataPave 프로그램을 이용한 포장파손예측모델개발)

  • Jin, Myung-Sub;Yoon, Seok-Joon
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.9-18
    • /
    • 2002
  • The main distresses that influence pavement performance are rutting, fatigue cracking, and longitudinal roughness. Thus, it is important to analyze the factors that affect these three distresses, and to develop prediction models. In this paper, three distress prediction models were developed using DataPave program which stores data from a wide variety of pavement sections In the United States. Also, sensitivity studies were conducted to evaluate how the input variables impact on the distresses. The result of sensitivity study for the prediction model of rutting showed that asphalt content, air void, and optimum moisture content of subgrade were the major factors that affect rutting. The output of sensitivity study for the prediction model of fatigue cracking revealed that asphalt consistency, asphalt content, and air void were the most influential variables. The prediction model of longitudinal roughness indicated asphalt consistency, #200 passing percent of subgrade aggregate, and asphalt content were the factors that affect longitudinal roughness.

  • PDF

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

Top-Down Crack Modeling of Asphalt Concrete based on a Viscoelastic Fracture Mechanics

  • Kuai, Hai Dong;Lee, Hyn-Jong;Zi, Goang-Seup;Mun, Sung-Ho
    • 한국도로학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.93-102
    • /
    • 2008
  • An energy based crack growth model is developed in this study to simulate the propagation of top-down cracking in asphalt pavements. A viscoelastic fracture mechanics approach, generalized J integral, is employed to model the crack growth of asphalt concrete. Laboratory fatigue crack propagation tests for three different asphalt mixtures are performed at various load levels, frequencies and temperatures. Disk-shaped specimens with a proper loading fixture and crack growth monitoring system are selected for the tests. It is observed from the tests that the crack propagation model based on the generalized J integral is independent of load levels and frequencies, while the traditional Paris' law model based on stress intensity factor is dependent of loading frequencies. However, both models are unable to take care of the temperature dependence of the mixtures. The fatigue crack propagation model proposed in this study has a good agreement between experimental and predicted crack growth lives, which implies that the energy based J integral could be a better parameter to describe fatigue crack propagation of viscoelastic materials such as asphalt mixtures.

  • PDF