• Title/Summary/Keyword: cracking control

Search Result 354, Processing Time 0.025 seconds

An intelligent cooling control system for mitigating the cracking risks of mass concretes during bridge construction

  • Ruinan An;Peng Lin;Daoxiang Chen;Jianshu Ouyang;Zichang Li;Zheng Zhang;Yuanguang Liu
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.257-271
    • /
    • 2024
  • During any construction involving mass concrete, it is crucial to control cracking during the placement and curing process. This study develops an intelligent cooling control system that regulates water temperature and flow based on concrete hydration heat, effectively preventing cracking in bridge construction. The system consists of hardware, a neural network-based control algorithm, and an information management system. An optimal cooling control strategy is proposed to dynamically regulate water flow and temperature, preventing cracking by utilizing real-time temperature data, target control curves, neural network algorithms, and cloud-based computing. The intelligent cooling control system has been successfully implemented in controlling cracking risks during bridge construction. It not only mitigates the risk but also provides a convenient management strategy for bridge construction projects. The optimal cooling control strategy ensures high accuracy and stability under unsupervised learning conditions. This intelligent cooling control system can be applied to similar constructions such as bridge, dam, and building that involve the use of mass concrete.

Construction Techniques for Crack Control of Underground Box Structures (지하철 박스 구조물의 수화열 해석 및 온도균열 제어 방안)

  • 차수원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.153-159
    • /
    • 2001
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction, which causes the restraining effects on the boundaries. The purpose of the present study is to develop the rational construction method to control the thermal cracking problem of the box structures. In this study, the causes and mechanism of thermal cracking according to construction stages in the RC box structures are thoroughly analyzed. The major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures. The research results of the present study can be efficiently used for the control of cracking of box structures during construction stages.

  • PDF

Cracking Control of Concrete Deck in Steel-Concrete Composite Bridges (강합성 교량의 바닥판 콘크리트 균열관리)

  • 박해균;이명섭;안병제;곽효경;서영재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.355-362
    • /
    • 2001
  • This study deals with cracking control of concrete deck in steel-concrete composite bridges according to the concrete slab casting sequences. In correlation studies between casting sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model. Finally, the methods of cracking control in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slab.

  • PDF

Thermal Crack Control of Mass Concrete by Concrete Placing Height and Curing Method (매스콘크리트의 타설높이 및 양생조건에 따른 온도균열 저감 방안에 관한 연구)

  • 민병소;신길수;김대권;이현희;신성우;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.369-376
    • /
    • 2001
  • As many studies have performed to reduce thermal cracking in mass concrete, it is already prepared against thermal cracking, we can find many plans against thermal cracking in several reference book. But it needs practical guidelines to be available in construction site. In this study to establish control method of thermal cracking in mass concrete, tests which have factors of placing thickness and curing method of concrete are performed.

  • PDF

Crack Control in Beams and One-Way Slabs (보 및 1방향 슬래브의 균열제어)

  • Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.381-390
    • /
    • 2012
  • The KCI Building Code (2003 and 2007) provisions to control flexural cracking in beams and one-way slabs are discussed for related researches and the development of the provisions. Based on the basic ideas over the development of current provisions, possible problems with cracking control are identified and discussed for the remedies to fix the problems. Simple and clear equations to control flexural cracking in beams and one-way slabs are presented. The presented equations would avoid any conflicts with other provisions for the spacing of reinforcement.

Study of Edge Crack Growth According to Rolling Condition in Cold Rolling (냉간압연공정에서 공정변수에 따른 엣지 크랙 성장에 관한 연구)

  • Cui, X.Z.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The shape of edge cracking in rolling process generally occurred "V" shape. This cracking is successively generated at width edge of strip. The edge cracking is developed to center of strip during rolling process. In the results, the strip is occurred fracture, and the productivity is gone down because of the extensive production time. Accordingly, we need to control crack propagation during rolling process. But, the control of cracking is very difficult in rolling process. Previously the studies of edge cracking were mainly performed on hot rolling process. In this paper, the shape of the edge cracking in rolling was estimated according to process conditions such as initial edge crack size, reduction ratio and tension using FE-simulation and the simplicity experiments on cold rolling process.

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method (연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어)

  • Seo, Tae-Seok;Lim, Chang-Keun;Cho, Yun-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • In case of the slender mass concrete like attached wall, retaining wall and bridge tower, the low heat cement and the control joint are mainly used for thermal cracking control. However, even if these cracking control methods are considered, it is impossible to control thermal cracks perfectly, because the external restraint is largely in these mass concrete. Because these cracks occurring in slender mass concrete members almost penetrate concrete member, the special cracking control is demanded in these mass concretes. The vertical pipe cooling method improving existing pipe cooling method was developed for the active thermal cracking control of slender mass concrete, and applied at the field attached wall. In results, the maximum temperature dropped more than $10^{\circ}C$ by vertical pipe cooling method, and the cracks decreased about more than 50%.

The Durability of Ships Considering Fatigue Cracking

  • Liu, Donald;Thayamballi, Anil
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 1997
  • The larger trends related to cracking in ocean going vessels (primarily tankers and bulk carriers) are reviewed on the basis of available data. The typical interrelated causes of such cracking are: high local stresses, extensive use of higher strength steels, inadequate treatment of dynamic loads, adverse operational factors (harsh weather, improper vessel handling), and controllable structural degradation (corrosion, wear, stevedore damage). Three consequences of cracking are then discussed: structural failure, pollution, and increased maintenance. The first two, while rare, are potentially of high consequence including loss of life. The types of solutions that can be employed to improve the durability of ships in the face of fatigue cracking are then presented. For existing vessels, these solutions range from repairs based on structural analysis or service experience, control of corrosion, and enhanced surveys. For new vessels, the use of advanced design procedures that specifically address dynamic loads and fatigue cracking is necessary. As the preferred solution to the problem of cracking in ships, this paper advocates prevention by explicit design by first principles.

  • PDF