• Title/Summary/Keyword: cracked reinforced concrete

Search Result 185, Processing Time 0.042 seconds

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

Analysis of R/C frames considering cracking effect and plastic hinge formation

  • Kara, Ilker Fatih;Ashour, Ashraf F.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.669-681
    • /
    • 2017
  • The design of reinforced concrete buildings must satisfy the serviceability stiffness criteria in terms of maximum lateral deflections and inter story drift in order to prevent both structural and non-structural damages. Consideration of plastic hinge formation is also important to obtain accurate failure mechanism and ultimate strength of reinforced concrete frames. In the present study, an iterative procedure has been developed for the analysis of reinforced concrete frames with cracked elements and consideration of plastic hinge formation. The ACI and probability-based effective stiffness models are used for the effective moment of inertia of cracked members. Shear deformation effect is also considered, and the variation of shear stiffness due to cracking is evaluated by reduced shear stiffness models available in the literature. The analytical procedure has been demonstrated through the application to three reinforced concrete frame examples available in the literature. It has been shown that the iterative analytical procedure can provide accurate and efficient predictions of deflections and ultimate strength of the frames studied under lateral and vertical loads. The proposed procedure is also efficient from the viewpoint of computational time and convergence rate. The developed technique was able to accurately predict the locations and sequential development of plastic hinges in frames. The results also show that shear deformation can contribute significantly to frame deflections.

Development of A New Truss Model for RC Beams without Web Reinforcement (전단보강철근이 없는 RC보의 트러스 해석기법 연구)

  • Kim, Jee-Hoon;Jeong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1109-1114
    • /
    • 2001
  • This paper describes an attempt to develop a new truss model for reinforced concrete beams failing in shear based on a rational behavioral model. The key idea incorporated with truss model is the internal force state factor which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new truss model using internal force state factor may provide a comprehensive result of shear strength in reinforced concrete beams without web reinforcement.

  • PDF

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

Evaluation of the Performance of Pre-cracked RC Beams Coated with Polymeric Composites (폴리머 복합재료로 코팅된 손상 철근콘크리트 보의 성능평가)

  • Lee Haeng-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.167-170
    • /
    • 2005
  • This paper summarizes the results of a series of numerical evaluations (Lee et al., 2004, 2005) on the performance of pre-cracked reinforced concrete (RC) beams coated with polymeric composites. It was intended to numerically show the superior characteristics of the polymeric composites for enhancing the strength and ductility of existing concrete structures. Further, the predicted load-carrying and energy absorbing capacities of the beams were compared with previous experiments to verify the predictive capability of implemented computational model.

  • PDF

Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete (강섬유 보강 초고성능 콘크리트의 전단 전달 모델)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam (사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

Shear Transfer across Cracks in Reinforced Concrete Members (RC 부재 균열면에서의 전단력 전달에 관한 고찰)

  • 홍성걸;하태훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.527-532
    • /
    • 2000
  • Cracks in reinforced concrete members are important element in structural analysis and design. It is clear from the test results that shear strength of cracked member is remarkably degraded compared with uncracked one. However, considerable amount of shear resistance by such mechanisms as aggregate interlock and dowel action is still active. There are various approaches to shear transfer estimation including finite element analysis, fracture mechanics, upper bound theory of plasticity, etc., but working out comprehensive and consistent models and manageable equations is rather difficult and remains to be improved. Shear transfer problems under cyclic loading and effective compressive strength of cracked concrete have not been adequately investigated and need further systematic research.

  • PDF

Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach

  • Kwon, Seung-Jun;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Carbonation in RC (reinforced concrete) structure is considered as one of the most critical deteriorations in urban cities. Although RC column has one mix condition, carbonation depth is measured spatially differently due to its various environmental and internal conditions such as sound, cracked, and joint concrete. In this paper, field investigation was performed for 27 RC columns subjected to carbonation for eighteen years. Through this investigation, carbonation distribution in sound, cracked, and joint concrete were derived with crack mappings. Considering each related area and calculated PDF (probability of durability failure) of sound, cracked, and joint concrete through Monte Carlo Simulation (MCS), repairing timings for RC columns are derived based on several IPDF (intended probability of durability failure) of 1, 3, and 5%. The technique of equivalent probability including carbonation behaviors which are obtained from different conditions can provide the reasonable repairing strategy and the priority order for repairing in a given traffic service area.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.