• Title/Summary/Keyword: cracked reinforced concrete

Search Result 185, Processing Time 0.027 seconds

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

Analytical Study on Inelastic Behavior of RC Bridge Columns with Unbonding of Main Reinforcements at Plastic Hinge Region (소성힌지영역에서 비부착 주철근을 갖는 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.29-36
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of reinforced concrete bridge columns with unbonding of main reinforcements at plastic hinge region. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The effect of unbonding of main reinforcements at plastic hinge region has been also taken into account to model the concrete and reinforcing steel. The proposed numerical method for the inelastic behavior of reinforced concrete bridge columns with unbonding of main reinforcements at plastic hinge region is verified by comparison with reliable experimental results.

Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements

  • Biondini, Fabio;Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.685-698
    • /
    • 2001
  • In this paper, a general method for the automatic search for Strut-and-Tie (S&T) models representative of possible resistant mechanisms in reinforced concrete elements is proposed. The representativeness criterion here adopted is inspired to the principle of minimum strain energy and requires the consistency of the model with a reference stress field. In particular, a highly indeterminate pin-jointed framework of a given layout is generated within the assigned geometry of the concrete element and an optimum truss is found by the minimisation of a suitable objective function. Such a function allows us to search the optimum truss according to a reference stress field deduced through a F.E.A. and assumed as representative of the given continuum. The theoretical principles and the mathematical formulation of the method are firstly explained; the search for a S&T model suitable for the design of a deep beam shows the method capability in handling the reference stress path. Finally, since the analysis may consider the structure as linear-elastic or cracked and non-linear in both the component materials, it is shown how the proposed procedure allows us to verify the possibilities of activation of the design model, oriented to the serviceability condition and deduced in the linear elastic field, by following the evolution of the resistant mechanisms in the cracked non-linear field up to the structural failure.

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels (섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델)

  • Cho, Chang-Geun;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.597-605
    • /
    • 2009
  • The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

Nonlinear Analysis of Reinforced and Prestressed Concrete Slabs (철근 및 프리스트레스트 콘크리트 슬래브의 비선형 해석)

  • 최정호;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.223-234
    • /
    • 1996
  • The purpose of this paper is to present an analysis method by using the finite element method which can exactly analyze load-deflection relationships, crack propagations. and stresses and strains of reinforcements, tendons, and concrete in behaviors of elastic. inelastic and ultimate ranges of reinforced and prestressed concrete slabs under monotonically increasing loads. For t h i s purpose, the m a t e r i a l and geometric nonlinearities are taken into account in this study. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearities of the structure. The material nonlinearities are taken into account by comprising the tension, compression. and shear models of cracked concrete and models for reinforcements and tendons in the concrete : and also a so-called smeared crack model is incorporated. The reinforcements and t,endons are assumed to be in a uniaxial stress state and are modelled as smeared layers of equivalent thickness. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzcd and compared with experimental results. As a result, this method can successfully predict the nonlinear and inelastic behaviors throughout the fracture of reinforced and prestressed concrete slabs.

Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The purpose of this study is to investigate the size effect on inelastic behavior of reinforced concrete bridge piers. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. To determine the size effect on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for comparison with the full-scale bridge pier behavior.

Fatigue behavior of concrete beams reinforced with HRBF500 steel bars

  • Li, Ke;Wang, Xin-Ling;Cao, Shuang-Yin;Chen, Qing-Ping
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • The purpose of this study was to investigate experimentally the fatigue performance of reinforced concrete (RC) beams with hot-rolled ribbed fine-grained steel bars of yielding strength 500MPa (HRBF500). Three rectangular and three T-section RC beams with HRBF500 bars were constructed and tested under static and constant-amplitude cyclic loading. Prior to the application of repeated loading, all beams were initially cracked under static loading. The major test variables were the steel ratio, cross-sectional shape and stress range. The stress evolution of HRBF500 bars, the information about crack growth and the deflection developments of test beams were presented and analyzed. Rapid increases in deflections and tension steel stress occured in the early stages of fatigue loading, and were followed by a relatively stable period. Test results indicate that, the concrete beams reinforced with appropriate amount of HRBF500 bars can survive 2.5 million cycles of constant-amplitude cyclic loading with no apparent signs of damage, on condition that the initial extreme tensile stress in HRBF500 steel bars was controlled less than 150 MPa. It was also found that, the initial extreme tension steel stress, stress range, and steel ratio were the main factors that affected the fatigue properties of RC beams with HRBF500 bars, whose effects on fatigue properties were fully discussed in this paper, while the cross-sectional shape had no significant influence in fatigue properties. The results provide important guidance for the fatigue design of concrete beams reinforced with HRBF500 steel bars.

Unbonded tendon model considering time-dependent behavior (시간의존적 거동을 고려한 비부착 텐던 모델)

  • Park, Jae-Guen;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.463-466
    • /
    • 2005
  • The purpose of this study is to develop of unbonded tendon model considering time-dependent behavior. In this paper, a numerical model for unbanded tendon is proposed based on the finite element method, which can represent straight or curved unbonded tendon behavior. This model and time-dependent material model are used to investigate the time-dependent behaviors of unbonded prestressed concrete structures. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressing steel. The proposed unbonded tendon model and numerical method for time-dependent behavior of unbonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

Computer modeling and analytical prediction of shear transfer in reinforced concrete structures

  • Kataoka, Marcela N.;El Debs, Ana Lucia H.C.;Araujo, Daniel de L.;Martins, Barbara G.
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • This paper presents an evaluation of shear transfer across cracks in reinforced concrete through finite element modelling (FEM) and analytical predictions. The aggregate interlock is one of the mechanisms responsible for the shear transfer between two slip surfaces of a crack; the others are the dowel action, when the reinforcement contributes resisting a parcel of shear displacement (reinforcement), and the uncracked concrete comprised by the shear resistance until the development of the first crack. The aim of this study deals with the development of a 3D numerical model, which describes the behavior of Z-type push-off specimen, in order to determine the properties of interface subjected to direct shear in terms cohesion and friction angle. The numerical model was validated based on experimental data and a parametric study was performed with the variation of the concrete strength. The numerical results were compared with analytical predictions and a new equation was proposed to predict the maximum shear stress in cracked concrete.