• Title/Summary/Keyword: cracked concrete structures

Search Result 138, Processing Time 0.021 seconds

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moradizadeh, Masih
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 2018
  • Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

Numerical and statistical analysis about displacements in reinforced concrete beams using damage mechanics

  • Pituba, Jose J. De C.;Delalibera, Rodrigo G.;Rodrigues, Fabio S.
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.307-330
    • /
    • 2012
  • This work intends to contribute for the improvement of the procedure suggested by Brazilian Technical Code that takes into account the cracked concrete stiffness in the estimative of the displacement of reinforced concrete beams submitted to service loads. A damage constitutive model accounting for induced anisotropy, plastic deformations and bimodular elastic response is used in order to simulate the concrete behaviour, while an elastoplastic behaviour is admitted for the reinforcement. The constitutive models were implemented in a program for bars structures analysis with layered finite elements. Initially, the damage model is briefly presented as well as the parametric identification of the materials that have been used in the reinforced concrete beams. After that, beams with different geometries and reinforcement area are analyzed and a statistical method (ANOVA) is employed in order to identify the main variables in the problem. Soon after, the same procedure is used with another resistance of concrete, where the compression strength is changed. The numerical responses are compared with the ones obtained by Brazilian Technical Code and experimental tests in order to validate the use of the damage model. Finally, some remarks are discussed based on responses presented in this work.

FEA Simulations on Water Absorption in Various Pre-Cracked Concretes (유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.68-75
    • /
    • 2021
  • This study performed simulating water absorption in various pre-cracked concretes. 2D-Finite Element Analysis (2D-FEA) model was developed based on experimental results on the amount of absorbed water in concrete with the exposure time. Results from the 2D-FEA showed that both crack width and crack depth strongly affect the amount of absorbed water in cracked concrete. In addition, water absorption rate is introduced and a predictive equation is suggested to estimate the rate in order to quantify the amount of absorbed water in cracked concrete. It was confirmed that water absorption in concrete having less than 150 mm crack depth was dominated as a main transport factor regardless of crack width. Therefore, considering that steel corrosion caused by chlorides dissolved in water mainly occurs in reinforced concrete structures, it is necessary that crack depth as well as crack width should be investigated in reinforced concrete structures at the time of field-inspection.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Numerical Study on the Joints between Precast Post-Tensioned Segments

  • Kim, Tae-Hoon;Kim, Young-Jin;Jin, Byeong-Moo;Shin, Hyun-Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.3-9
    • /
    • 2007
  • This paper presents a numerical procedure for analyzing the joints between precast post-tensioned segments. A computer program for the analysis of reinforced concrete structures was run for this problem. Models of material nonlinearity considered in this study include tensile, compressive and shear models for cracked concrete and a model for reinforcing steel with smeared crack. An unbonded tendon element based on the finite element method, that can describe the interaction between the tendon and concrete of prestressed concrete member, was experimentally investigated. A joint element is newly developed to predict the inelastic behavior of the joints between segmental members. The proposed numerical method for the joints between precast post-tensioned segments was verified by comparison of its results with reliable experimental results.

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.319-336
    • /
    • 2015
  • Life cycle performance of corrosion affected RC structures is an important and challenging issue for effective infrastructure management. The accurate condition assessment of corroded RC structures mainly depends on the effective evaluation of deterioration occurring in the structures. Structural performance deterioration caused by reinforcement corrosion is a complex phenomenon which is generally uncertain and non-decreasing. Therefore, a stochastic modelling such as the gamma process can be an effective tool to consider the temporal uncertainty associated with performance deterioration. This paper presents a time-dependent reliability analysis of corrosion affected RC structures associated bond strength degradation. Initially, an analytical model to evaluate cracking in the concrete cover and the associated loss of bond between the corroded steel and the surrounding cracked concrete is developed. The analytical results of cover surface cracking and bond strength deterioration are examined by experimental data available. Then the verified analytical results are used for the stochastic deterioration modelling, presented here as gamma process. The application of the proposed approach is illustrated with a numerical example. The results from the illustrative example show that the proposed approach is capable of assessing performance of the bond strength of concrete structures affected by reinforcement corrosion during their lifecycle.

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads

  • Zhou, C.E.;Vecchio, F.J.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.455-479
    • /
    • 2005
  • This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models included in the structural analysis are mainly based on the Modified Compression Field Theory and the Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is then implemented into a nonlinear finite element analysis program VecTor2(C) for 2D reinforced concrete membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the complete response of a concrete structure to thermal and mechanical loads.