• Title/Summary/Keyword: cracked concrete structures

Search Result 138, Processing Time 0.023 seconds

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

Study on the Fatigue Behaviors of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C 보의 피로거동에 관한 연구)

  • 심종성;홍영균;최완철;황의숭;이차돈;배인환;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.319-324
    • /
    • 1995
  • Strengthening a damaged structure by bonding steel plate on the surface of cracked structural members have been widely accepted for strengthening the structural components Recently, however, caron fiber sheets have been developed in order to achive more effective way of strengthening damaged structures due to their superior material properties to those of conventionally used steel plates in terms of their lighter unit weight and higher tensile strength. It has been reported that when both methods are applied to a damaged beam element, flexural strength and its stiffness of a beam increase and the rate of crack development as well as crack width and edflection under service loads are reduced, In this study some experiments are performed in order to comparetively observe the structural properties of the damaged beams which are either strengthened with different lengths of steel plates or with carbon sheets on the crack propagation, failure mechanisms, and load-deflection charateristics under the fatigue loadings.

  • PDF

Vector algorithm for layered reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 1995
  • A new vector algorithm is presented for computing the stiffness matrices of layered reinforced concrete shell elements. Each element stiffness matrix is represented in terms of three vector arrays of lengths 78, 96 and 36, respectively. One element stiffness matrix is calculated at a time without interruption in the vector calculations for the uncracked or cracked elements. It is shown that the present algorithm is 1.1 to 7.3 times more efficient then a previous algorithm developed by us on a Cray Y-MP supercomputer.

AN EVALUATION ON THE EFFECTIVE FLEXURAL RIGIDITY OF RC SLABS STRENGTHENED WITH CFRP SHEET AND GSP PLATE

  • Shim Jae-Joong;Song Seul-Ki;Oh Min-Ho;Cui-Jie;Park Sun-Kyu
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1272-1277
    • /
    • 2009
  • Since improved capacity for RC bridges has been required due to deterioration or increase in traffic, the deflection of cracked reinforced concrete slabs need to be reconsidered. Strengthening is known as the better way to improve capacity of bridges than reconstructing. In this paper, Fiber Reinforced Plastic (FRP) was introduced as one of the best strengthening methods for civil structures. The structures strengthened with FRPs can improve the strengthening capacity and serviceability. Therefore, CFRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used for strengthening slabs of RC bridges. Experimental data from the strengthening will be helpful to better understand the effect of the strengthening and effective flexural rigidity.

  • PDF

Self-healing and leakage performance of cracks in the wall of a reinforced concrete water tank

  • Gao, Lin;Wang, Mingzhen;Guo, Endong;Sun, Yazhen
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.727-741
    • /
    • 2019
  • A reinforced concrete water tank is a typical functional liquid storage structure and cracks are the greatest threat to the liquid storage structure. Tanks are readily cracked due to seismic activity, thereby leading to the leakage of the stored liquid and a loss of function. In order to study the effect of cracks on liquid storage tanks, self-healing and leakage tests for bending cracks and through cracks in the walls of a reinforced concrete water tank were conducted. Material performance tests were also performed. The self-healing performance of bending cracks in a lentic environment and through cracks in a lotic environment were tested, thereby the self-healing width of bending micro-cracks in the lentic environment in the short term were determined. The through cracks had the capacity for self-healing in the lotic environment was found. The leakage characteristics of the bending cracks and through cracks were tested with the actual water head on the crack. The effects on liquid leakage of the width of bending cracks, the depth of the compression zone, and the acting head were determined. The relationships between the leakage rate and time with the height of the water head were analyzed. Based on the tests, the relationships between the crack characteristics and self-healing as well as the leakage were obtained. Thereby the references for water tank structure design and grading earthquake damage were provided.

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Analytical Study on the Inelastic Behavior of Reinforced High-Strength Concrete Bridge Columns (고강도 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Shin, Hyun-Mock;Lee, Heon-Min;Sung, Dae-Jung;Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of reinforced high-strength concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model ol reinforcing steel. The smeared rack approach is incorporated. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined high-strength concrete. The proposed numerical method for the inelastic behavior of reinforced high-strength concrete bridge columns is verified by comparison with reliable experimental results.

Development of Automatic Crack Detection System for Concrete Structure Using Image Processing Method (이미지 분석기법을 이용한 콘크리트 구조물의 균열 검출 시스템 개발)

  • Lee, Ho Beom;Kim, Jong Woo;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.64-77
    • /
    • 2012
  • In this study, the crack detecting system with digital image processing techniques based on the mathematical morphology method was developed to detect cracks in concrete structures. In the developed system, the image combining technique of reconstructing multiple images as an entire single image considering efficient management of analysis results was applied as an additional module. The developed system was verified through a field test with the cracked concrete culvert and the crack width of 0.2 mm was able to be detected in the 40m span. In the image analysis, the difference between calculated crack width and actual crack width were less than 0.08mm. For image combination in the stitching test of pattern images, the stitched image was identical with the original picture of entire subject in the visual perception level.

Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project

  • Zhang, Xiangyang;Bayat, Vahid;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Yong, Weixun;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.319-329
    • /
    • 2020
  • Structural damage to an arch dam is often of major concern and must be evaluated for probable rehabilitation to ensure safe, regular, normal operation. This evaluation is crucial to prevent any catastrophic or failure consequences for the life time of the dam. If specific major damage such as a large crack occurs to the dam body, the assessments will be necessary to determine the current level of safety and predict the resistance of the structure to various future loading such as earthquakes, etc. This study investigates the behavior of an arch dam cracked due to water pressure. Safety factors (SFs), of shear and compressive tractions were calculated at the surfaces of the contraction joints and the cracks. The results indicated that for cracking with an extension depth of half the thickness of the dam body, for both cases of penetration and non-penetration of water load into the cracks, SFs only slightly reduces. However, in case of increasing the depth of crack extension into the entire thickness of the dam body, the friction angle of the cracked surface is crucial; however, if it reduces, the normal loading SFs of stresses and joints tractions reduce significantly.

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.