• Title/Summary/Keyword: crack spacing

Search Result 171, Processing Time 0.03 seconds

Crack behaviour of top layer in layered rocks

  • Chang, Xu;Ma, Wenya;Li, Zhenhua;Wang, Hui
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • Open-mode cracks could be commonly observed in layered rocks. A concept model is firstly used to explore the mechanism of the vertical cracks (VCs) in the top layer. Then the crack behaviour of the two-layer model is simulated based on a cohesive zone model (CZM) for layer interfaces and a plastic-damage model for rocks. The model indicates that the tensile stress normal to the VCs changes to compression if the crack spacing to layer thickness ratio is lower than a threshold. The results indicate that there is a threshold for interfacial shear strength that controls the crack patterns of the layered system. If the shear strength is lower than the threshold, the top layer is meshed by the VCs and interfacial cracks (ICs). When the shear strength is higher than the threshold, the top layer is meshed by the VCs and parallel cracks (PCs). If the shear strength is comparative to the threshold, a combining pattern of VCs, PCs and ICs for the top layer can be formed. The evolutions of stress distribution in the crack-bound block indicate that the ICs and PCs can reduce the load transferred for the substrate layer, and thus leads to a crack saturation state.

Cracking behavior of transversely prestressed concrete box girder bridges (횡방향 프리스트레스트 박스거더의 균열거동 연구)

  • Oh, Byung-Hwan;Choi, Young-Choel
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • The cracking behavior of prestressed concrete members is important for the rational design of prestressed concrete structures. However, the test data on the cracking behavior of prestressed concrete structures are very limited. The purpose of the present study is to investigate the crack spacing and crack width in transversely post-tensioned decks of concrete box girder bridges under applied loading. For this purpose, large scale test members of concrete box girder segments were fabricated and tested. The crack widths, crack spacings and crack patterns were investigated for various load levels. The crack widths and steel strains were continuously monitored during the loading process. To derive a rational predicton equation for crack width, the bond characteristics of post-tensioned steel and nonprestressed rebar in the PSC members were explored first. This was done by measuring the strains of prestressing steel and nonprestressed rebar in the test members under loading. A simple equation for the prediction of maximum crack width in transversely post-tensioned concrete one-way slabs is proposed by considering bond characteristic of prestressing steel and nonprestressed reinforcement. The comparison of proposed equation with experimental data shows good correlation. The present study indicates that ACI and CEB-FIP code equations exhibit rather large deviation from test data on prestressed concrete members.

  • PDF

Crack-controlled design methods of RC beams for ensuring serviceability and reparability

  • Chiu, Chien-Kuo;Saputra, Jodie;Putra, Muhammad Dachreza Tri Kurnia
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • For the design of flexural and shear crack control for reinforced concrete (RC) beams related to serviceability and reparability ensuring, eight simply-supported normal-strength reinforced concrete (NSRC) beam specimens are tested and the existing high-strength reinforced concrete (HSRC) experimental data are included in the investigation of this work. According to the investigation results of flexural and shear cracks, this works modifies the existing design formulas to determine the spacing of the tensile reinforcement for the flexural crack control of a HSRC/NSRC beam design. Additionally, for a specified shear crack width of 0.4 mm, the allowable stresses of the shear reinforcement are also identified. For the serviceability and reparability ensuring of HSRC/NSRC beams, this works proposes the relationship curves between the maximum flexural width and allowable stress of the tensile reinforcement, and the relationship curves between the shear crack width and allowable shear force that can be used to do the crack width control directly.

Relationship between Crack Propagation Depth and Crack Width Movement in Continuously Reinforced Concrete Slab Systems (연속철근 콘크리트 슬래브 시스템의 균열진전 깊이와 균열폭 거동 관계 분석)

  • Cho, Young Kyo;Kim, Seong-Min;Oh, Han Jin;Choi, Lyn;Seok, Jong Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • PURPOSES : The purpose of this study is to investigate the relationship between the crack propagation depth through a slab and crack width movement in continuously reinforced concrete slab systems (CRCSs). METHODS : The crack width movements in continuously reinforced concrete pavement (CRCP) and continuously reinforced concrete railway track (CRCT) were measured in the field for different crack spacings. In addition, the crack width movements in both CRCP and CRCT were simulated using finite element models of CRCP and CRCT. The crack width movements, depending on the unit temperature change, were obtained from both the field tests and numerical analysis models. RESULTS : The experimental analysis results show that the magnitudes of the crack width movements in CRCSs were related to not only the crack spacing, but also the crack propagation depth. In CRCP, the magnitudes of the crack width movements were more closely related to the crack propagation depths. In CRCT, the crack width movements were similar for different cracks since most were through cracks. If the numerical analysis was performed to predict the crack width movements by assuming that the crack propagates completely through the slab depth, the predicted crack width movements were similar to the actual ones in CRCT, but those may be overestimated in CRCP. CONCLUSIONS : The magnitudes of the crack width movements in CRCSs were mainly affected by the crack propagation depths through the slabs.

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

A Study on Chloride ion Diffusion in Cracked Concrete (균열이 발생한 콘크리트에서의 염화물 이온 확산에 관한 연구)

  • 배상운;박상순;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.677-682
    • /
    • 2001
  • In this study, a method to evaluate diffusion coefficient of chloride ion in cracked concrete is proposed. For cracked concrete having either anisotropic or isotropic crack network, each crack of saturated concrete is considered as a V shape crack, and an effective diffusion coefficient is expressed with diffusion coefficients of cracked part and noncracked part and a so-called crack spacing factor. A comparison with experimental results shows that the diffusion coefficient for cracked concrete is accurately predicted by the effective diffusion coefficient. Prediction results also show that the cracks in concrete markedly change the diffusion properties and accelerate penetration of drifting species. The method in this paper can be effectively used to consider the effect of cracks on concrete diffusion coefficient of cracked concrete.

  • PDF

INTERACTION BETWEEN THREE MOVING GRIFFITH CRACKS AT THE INTERFACE OF TWO DISSIMILAR ELASTIC MEDIA

  • Das, S.;Patra, B.;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction efect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing. AMS Mathematics Subject Classification : 73M25.

Crack Mitigation of Reinforced Concrete and Expansive SHCC Composite Slabs (콘크리트와 팽창형 SHCC 합성 슬래브의 균열제어 성능)

  • Yun, Hyun-Do;Lim, Sung-Chan;T., Iizuka;Y., Sakaguchi;K., Rokugo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.23-24
    • /
    • 2009
  • This paper explores the structural application of an expansive SHCC to improve the crack-damage properties of RC flexural members. The results of test on four simply supported slabs are described. The effect of the type of SHCC (Non-and expansive SHCC) and thickness of SHCC layer (10 and 20mm) on the ultimate flexural load, first crack load, crack width and spacing, and the load-deflection relationship of one-way slabs was investigated.

  • PDF

Fatigue crack behavior under constant stress and periodic overstressing (일정응력 및 과대과소응력하에서의 피로크랙 발생전파거동)

  • 송삼홍;이경노
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.57-65
    • /
    • 1991
  • It is experimented under rotary bending stress that the spacing of two micro hole flaws is adjacent and that it is distant. In order to observe the behavior of fatigue crack propagation, two kinds of specimens are tested under constant stress and periodic overstressing. Although the crack occurs faster when two micro-hole flaws are adjacent than when they are distant, but there is no difference of the number of fracture cycles between two. The crack propagates slower under low-high block stress than under high-constant stress, and it propagates faster under high-low block stress than under low-constant stress. The influence of two-step block stress is serious right after the stress varies.

  • PDF

Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldment (III) (2상계 스테인리스강 용접부의 피로크랙전파 특성 (III))

  • 이택순;권종완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.901-910
    • /
    • 1989
  • Corrosion fatigue crack propagation behavior of duplex stainless steel weldments in substitute ocean water was investigated to evalulate effects of micro-structural change and residual stresses. Fatigue crack propagation rate was found influenced markedly .alpha./.gamma. phase ratio but little by residual stresses. Fatigue crack propagation rate is higher in the corrosive environment than in room atmosphere. The crack propagation rate estimated by the measurement of striation spacing was higher than that, obtained by crack length measurement in low .DELTK.K region. At hight .DELTK.K region, however, both crack propagation rates were found to be identical.