• Title/Summary/Keyword: crack shape

Search Result 619, Processing Time 0.023 seconds

Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition

  • Yang, Keun-Hyeok;Cheon, Ju Hyun;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.211-216
    • /
    • 2017
  • Crack on concrete surface allows more rapid penetration of chlorides. Crack width and depth are dominant parameters for chloride behavior, however their effects on chloride penetration are difficult to quantify. In the present work, the previous anisotropic (1-D) model on chloride diffusion in concrete with single crack is improved considering crack shape and roughness. In the previous model, parallel-piped shape was adopted for crack shape in steady-state condition. The previous model with single crack is improved considering wedge shape of crack profile and roughness. For verifying the proposed model, concrete samples for nuclear power plant are prepared and various crack widths are induced 0.0 to 1.2 mm. The chloride diffusion coefficients in steady-state condition are evaluated and compared with simulation results. The proposed model which can handle crack shape and roughness factor is evaluated to decrease chloride diffusion and can provide more reasonable results due to reduced area of crack profile. The roughness effect on diffusion is evaluated to be 10-20% of reduction in chloride diffusion.

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

Concrete crack detection using shape properties (형태의 특징을 이용한 콘크리트 균열 검출)

  • Joh, Beom Seok;Kim, Young Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a concrete crack detection method using shape properties. It is based on morphology algorithm and crack features. We assume that an input image is contaminated by various noises. Thus, we use a morphology operator and extract patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. Also, it is robust to noisy environment. The proposed algorithm classifies the segmented image into crack and background using shape properties of crack. This method calculates values of properties such as the number of pixels and the maximum length of the segmented region. Also, pixel counts of clusters are considered. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed crack detection method has better results than those by existing detection methods.

Numerical Investigation of the Effect of Crack Shape on Leak Flow Characteristics in Pipelines (누설 모양에 따른 파이프 누수 특성에 대한 수치 해석 연구)

  • Lee, Hyunmin;Kim, Jungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.238-242
    • /
    • 2017
  • The effect of crack shape on the leak flow characteristics in pipelinesis investigated using computational fluid dynamics (CFD) simulations. In the present study, two different crack shapes are considered: axial crack andcircumferential crack. The present simulation results showed that under the same crack area, the aspect ratio influences the leak rate. When the aspect ratio is1, the leak rate reaches the minimum value. Moreover, the leak rate in the circumferentialcrack is slightly larger than that in the axial crack. The change in the leak rateaccording to the crack shape could be explained by the different velocitydistributions at the leak position depending on the aspect ratio.

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.

Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과)

  • Lee Jin-Kyung;Park Young-Chul;Lee Kyu-Chang;Lee Sang-Pill;Cho Youn-Ho;Lee Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Elastic Crack Opening Displacement of Slanted Circumferential Through-Wall Cracks in Thick-Walled Cylinder (원주방향 경사관통균열이 존재하는 두꺼운 배관의 탄성 균열열림변위)

  • Han, Tae-Song;Huh, Nam-Su;Shim, Do-Jun;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • According to recent research on leak-rate estimates to assess rupture probabilities of nuclear piping which contains a circumferential surface/through-wall cracks due to PWSCC, i.e., xLPR (Extremely Low Probability of Rupture) program, it has been revealed that the use of crack shape with an idealized circumferential through-wall crack during actual crack growth can lead to overestimate of the leak-rate. Thus, for accurate estimation of the leak-rate during crack growth, the more realistic crack shape that can simulate the crack shape transition from surface crack to through-wall crack should be used. In this context, in the present study, the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder was proposed based on 3-dimensional elastic finite element fracture mechanics analyses. To propose the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder, the geometric variables affecting crack opening displacement, i.e., thickness of cylinder, reference inner crack length and slant crack ratio were systematically varied. In terms of loading conditions, axial tension, global bending moment and internal pressure were considered. The present results can be applied to calculate the leak-rate considering more realistic crack shape transition from surface crack to idealized through-wall crack, and can be expected to enhance current leak-rate estimation scheme, for instance, in xLPR program etc.

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식균열 성장해석)

  • 신규인;박재학;김흥덕;정한섭
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

Investigating the effects of non-persistent cracks' parameters on the rock fragmentation mechanism underneath the U shape cutters using experimental tests and numerical simulations with PFC2D

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Abad, Sh. Mohamadi Bolban;Marji, Mohammad Fatehi;Saeedi, Gholamreza;Yu, Yibing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.495-513
    • /
    • 2022
  • This paper aims to study the fracture mechanism of rocks under the 'u'shape cutters considering the effects of crack (pre-existing crack) distances, crack spacing and crack inclination angles. The effects of loading rates on the rock fragmentation underneath these cutters have been also studied. For this purpose, nine experimental samples with dimensions of 5 cm×10 cm×10 cm consisting of the non-persistent cracks were prepared. The first three specimens' sets had one non-persistent crack (pre-existing crack) with a length of 2 cm and angularity of 0°, 45°, and 90°. The spacing between the crack and the "u" shape cutter was 2 cm. The second three specimens" set had one non-persistent crack with a length of 2 cm and angularity of 0°, 45°, and 90° but the spacing between pre-existing crack and the "u" shape cutter was 4 cm. The third three specimens'set has two non-persistent cracks with lengths of 2 cm and angularity of 0°, 45° and 90°. The spacing between the upper crack and the "u" shape cutter was 2 cm and the spacing between the lower crack and the upper crack was 2 cm. The samples were tested under a loading rate of 0.005 mm/s. concurrent with the experimental investigation. The numerical simulations were performed on the modeled samples with non-persistent cracks using PFC2D. These models were tested under three different loading rates of 0.005 mm/s, 0.01 mm/sec and 0.02 mm/sec. These results show that the crack number, crack spacing, crack angularity, and loading rate has important effects on the crack growth mechanism in the rocks underneath the "u" shape cutters. In addition, the failure modes and the fracture patterns in the experimental tests and numerical simulations are similar to one another showing the validity and accuracy of the current study.