• Title/Summary/Keyword: crack separation

Search Result 99, Processing Time 0.03 seconds

Damage of bonded, riveted and hybrid (bonded/riveted) joints, Experimental and numerical study using CZM and XFEM methods

  • Ezzine, M.C.;Amiri, A.;Tarfaoui, M.;Madani, K.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.595-613
    • /
    • 2018
  • The objective of our study is to analyze the behavior of bonded, riveted and hybrid (bonded / riveted) steel / steel assemblies by tensile tests and to show the advantage of a hybrid assembly over other processes. the finite element method with the ABAQUS numerical code was used to model the fracture behavior of the different assemblies. Cohesive zone models (CZM) have been adopted to model crack propagation in bonded joints using a bilinear tensile separation law implemented in the ABAQUS finite element code. The riveted assemblies were modeled with the XFEM damage method identified in this ABAQUS numerical code. Both CZM and XFEM methods are combined to model hybrid assemblies. The results are consistent with the experimental results and make it possible to guarantee the validity of the applied numerical model. The use of a hybrid assembly shows a high resistance compared to other conventional methods, where the number of rivets has been highlighted. The use of the hybrid assembly improves mechanical strength and increases service life compared to a single lap joint and a riveted joint.

The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact (온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향)

  • Ra Seung-woo;Jung Jong-an;Yang In-young
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

Finite Element Analytical Study of Steel Plate and Dowel Bar Systems Designed for Damage Reduction of Non-Bearing Walls (비내력벽의 손상제어를 위한 Steel Plate와 Dowel Bar 이격시스템에 대한 유한요소해석)

  • Lim, Chang-Gue;Moon, Kyo Young;Lee, Hong-Seok;Kim, Sung Jig;Kim, Young Nam;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.123-130
    • /
    • 2020
  • Generally the non-bearing walls in apartment buildings in Korea are not considered as a lateral force resisting members for the design consideration. This engineering practice caused large crack damages and brittle fractures of the non-bearing walls when subjected to Pohang earthquakes in 2017 since those have not been designed for seismic loading. In this study, finite element analysis was conducted for slot type non-bearing wall connection system to reduce damages and concentrate damages to the designated damping device through separation from the structural wall members. Steel plate and dowel bar systems designed for the dissipation of seismic energies were modeled and analyzed to investigate the damage reductions. Finally, the test result and the analysis result were compared and verified.

Oxygen Permeation Characteristics of Nano-silica Hybrid Thin Films (나노 실리카 하이브리드 박막의 산소 투과 특성)

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.174-181
    • /
    • 2007
  • In this study, $SiO_2/poly(ethylene-co-vinyl$ alcohol)(EVOH) hybrid coating materials with gas barrier property could be produced using sol-gel method. The biaxially oriented polypropylene (BOPP) substrate with surface pretreatment was coated with the prepared hybrid sols containing various inorganic silicate component by a spin coating method. Crystallization behavior of the hybrids was investigated in terms of analysis of X-ray diffraction and cooling thermogram from DSC experiment. From the morphological observation of the $SiO_2/EVOH$ hybrid gel, it was confirmed that there existed an optimum content of inorganic silicate precursor, Tetraethylorthosilicate (TEOS), to produce hybrid materials with dense microstructure, exhibiting uniformly dispersed silica particles with average size below 100 nm. When TEOS was added at below or above the optimum content, particle clusters with large domain were observed, resulting in phase separation. This morphological result was found to be in good agreement with that of oxygen permeability of the hybrid coated films. In the case of film coated with hybrid prepared from addition of 0.01 - 0.02mol of TEOS, a remarkable improvement in barrier property could be obtained, however, with the addition of TEOS more than 0.04 mol, the barrier property was dramatically reduced because of phase separation and micro-crack formation on the film surface.

Anatomy of Quercus variabilis Charcoal Manufactured at Various Temperatures (제조 온도에 따른 굴참나무 목탄의 해부학적 특성)

  • Kim, Nam-Hun;Hwang, Won-Joong;Kwon, Sung-Min;Kwon, Goo-Joong;Lee, Seong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1-8
    • /
    • 2006
  • Anatomy of Quercus variabilis charcoal was investigated by scanning electron microscopy. Charcoal was prepared in an electric furnace under nitrogen gas atmosphere at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1000^{\circ}C$ for 10 min. The structure of charcoal was significantly affected by charring temperature. In cross section, charcoal prepared at $400^{\circ}C$ exhibited a smooth clean surface. As the charring temperature increased, the surface became more rough and increasingly disrupted. The cell walls appeared homogeneous and glass-like. Ray parenchyma cells showed very little separation from each other in radial section at $400^{\circ}C$. At $600^{\circ}C$ and above there is an apparent disintegration of the middle lamella, resulting in a separation of the ray cells. The $2{\sim}4{\mu}m$ wart-like protuberances were observed on the surfaces of the parenchyma cells. These structures were seen in charcoal prepared at all temperatures. Distinctive features can be seen in multiseriate rays as large crack and split. Rhomboidal crystals in crystalliferous cells had a smooth surface at $400^{\circ}C$ and $600^{\circ}C$, but the crystals had a sponge like appearance at $800^{\circ}C$ and $1000^{\circ}C$.

A Morphological Comparison of Bamboo Zephyr Produced from Phyllostachys nigra var. henonis and Indonesian Gigantochloa apus (국산 솜대와 인도폐시아산 TALI를 이용한 대나무 Zephyr의 형태적 특성 비교)

  • Kim, Yu-Jung;Jung, Ki-Ho;Park, Sang-Jin;Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.84-90
    • /
    • 2001
  • To investigate morphological characteristics of zephyr produced from two bamboo species, Phyllostachys nigra var. henonis and Gigantochloa apus, basic anatomic properties were examined by scanning electron microscopy and image analysis. According to SEM observation, zephyr from Phyllostachys nigra var. henonis was not of uniform in shape and showed macro crack between vascular bundle sheaths. This may be attributes to the sclerenchymatous fibers connected closely, thus resulting in difficult separation of intercellular layer. Zephyr from Gigantochloa apus was of uniform in shape, which may be caused by easy separation of intercellular layer of sclerenchymatous fibers having thin cell wall and large cell lumen. By image analysis in cross section of two species, the ratio of vascular bundle sheaths and cell wall ratio of sclerenchymatous fibers were examined. The ratio of vascular bundle sheaths in Phyllostachys nigra var. henonis was lower than that in Gigantochloa apus. However, cell wall ratio of sclerenchymatous fibers in Phyllostachys nigra var. henonis was higher than that in Gigantochloa apus.

  • PDF

Structure movement-coping Waterproofing technology application for Railroad facilities (철도시설에 있어서의 구조물 거동대응형 방수기술의 적용)

  • Cho, Il-Kyu;Lee, Jong-Yong;Oh, Sang-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1964-1969
    • /
    • 2010
  • Recently, as construction market scale is getting bigger and transportation industry is developing, the underground structure construction such as subway, tunnel (excavation box) or shield tunnel structure is becoming more diverse, and its demand is gradually increasing. However, for the concrete structures constructed underground, the water leakage is occurred due to the expansion joint and construction joint, or movement, uneven settlement, excessive load and vibration during application causing cracks. Many waterproofing method and materials are used in jobsites, but areas such as underground railroad and subway that has movement and vibration at all times, the ability of waterproofing layer is declined causing repetitive water leakage due to crack, erosion and separation, which is a vicious cycle. Therefore, this study evaluates the responsiveness to a movement for adhesive/flexible waterproofing material that can cope with the vibration and the movement of the structure. Also to recommend a waterproofing technology that can cope with structure movement through examples of actual jobsite applications such as subway and tunnel where there are constant movement and vibration.

  • PDF

Study on the Change of Physical and Anatomical Properties in the Pine Wood by Accelerated Weathering Test (촉진열화실험에 의한 소나무의 물성 및 조직 변화에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.324-331
    • /
    • 2012
  • The domestic pine was used to investigate the change of specific gravity, moisture contents, color and anatomical structure by accelerated weathering test (AWT). According to visual inspection, a few knot separation and looseness as well as considerable surface discoloration was found out. However, the crack and split of surface texture have been never occurred till the last step of AWT. On the whole, as the time of accelerated weathering test has increased, the specific gravity has decreased. Finally, after the 9th week of AWT, the specific gravity was 0.38 that reached to 82% compared to the control specimen. In case of moisture content (MC), it showed rising trend in its early stages, however, after 3th week of AWT it have displayed steady state. A deterioration of cell-wall components was not remarkably observed by scanning electron microscope (SEM), however the ray fractures of AWT specimen were observed more than those of control specimen. The full fracture of epithelial cell around resin canal was observed by optical microscope. The fracture of ray of 2th cycle AWT specimen was first, followed by 1th week and control group. A distortion of tracheid for early spring wood and fracture of epithelial cell were generally observed by a similar level, regardless of duration time of AWT. Therefore, it is obvious that increasing duration time of AWT does not affect the deterioration of micro-structure for wood members from this study. Although a considerable change of anatomical properties was not found, there is a need of further research to understand how will the changes of specific gravity and MC on the physical properties of wood member.

  • PDF

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.