• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.023 seconds

Application of shrinkage prediction models to restraint crack formation in unbonded post-tensioned slabs

  • Gabriela R. Martínez Lara;Myoungsu Shin;Yong-Hoon Byun;Goangseup Zi;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2024
  • This study aims to investigate the effect of restraint configuration on crack formation due to shrinkage-and-creep-induced volumetric change in unbonded post-tensioned slabs. The first part of this study focuses on the comparison of existing shrinkage and creep calculation models that are used to predict the volume-changing behavior of concrete. The second part of this study presents the finite element analysis of a series of architectural configuration prototypes subjected to shrinkage and creep, which comprise unbonded post-tensioned slabs with various restraint configurations. The shrinkage and creep effects were simulated in the analysis by imposing strains obtained from one selected calculation model. The results suggest that a slab up to 300 ft. (90 m) in length does not require a closure strip if it is unrestrained by perimeter walls, and that the most effective restraint crack mitigation strategy for a slab restrained by perimeter walls is a partial wall release.

Prediction of Initiation Location and Direction of Fretting Fatigue Crack (프레팅 피로 균열의 발생 위치 및 방향 예측)

  • Huh, Yong-Hak;R. E. Edwards;M.W. Brown;E.R. de Ios Rios
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

Prediction of the Fatigue Crack Growth from Strain Measurement on Spot Welded Nugget Zone (점 용접 너깃부에서의 변형률 측정에 의한 피로균열성장 예측)

  • 김덕중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.140-145
    • /
    • 1997
  • In case of spot-welded joints, the fatigue cracks generally originate from the weld interfaces of the neighborhood nugget tips, and propagate toward the outer surfaces of the sheets. Generally, because fatigue crack was observed in nugget around, strain gage was attached at nugget zone. Accordingly, it was very difficult to detect the generation time of fatigue crack in spot-welded joints and to measure the propagation speed of fatigue crack. We developed the non-destructive method, according to which th fatigue crack propagation rate can be quantitatively estimated by utilizing information obtained from strain gages bonded on the electrode indentations of spot welds. The results measured by real crack were compared with the data which was measured by strain gauge method in fatigue testing. And so fatigue strength was evaluated by stress intensity factor. In this study behavior of fatigue crack propagation under repeated load were considered.

  • PDF

Crack Retardation byt Load Reduction During Fatigue Crack Propagation (피로균열전파 동안 하중감소에 의한 균열지연)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2004-2010
    • /
    • 2003
  • Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference. between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction.

Multi-crack Detection of Beam Using the Change of Dynamic Characteristics (동특성 변화를 이용하여 보의 다중 균열 위치 및 크기 해석)

  • Kim, Jung Ho;Lee, Jung Woo;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.731-738
    • /
    • 2015
  • This study proposed the method of the multi-crack detection using the sensitivity coefficient matrix which is calculated from the change of eigenvalues and eigenvectors before and after the crack. Each crack is modeled by a rotational springs. The method is applied to the cantilever beam with miulti-crack. The eigenvalues and eigenvectors are determined for different crack locations and depths. The prediction of multi-crack detection are in good agreement with the results of structural reanalysis.

Automatic Determination of Crack Opening Loading under Random Loading by the Use of Neural Network (신경회로망을 이용한 변동하중 하에서의 균열열림점 자동측정)

  • Gang, Jae-Yun;Song, Ji-Ho;Kim, Jeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2283-2291
    • /
    • 2000
  • The neural network method is applied to automatically measure the crack opening load under random loading. The crack opening results obtained are compared with the visual measured results. Fatigue crack growth under random loading is predicted using the crack opening data measured by the neural network method, and the prediction results are compared with experimental ones. It is found that the neural network method can be successfully applied to consistently measure the crack opening load under random loading and also gives some results different from the results by visual measurement.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length (혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동)

  • Jeong, Eui-Hyo;Hur, Bang-Soo;Kwon, Yun-Ki;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

Critical Stress for a Crack Inclined to Princinal Material Direction in Orthotropic Material (직방성체에서 재료주축과 경사진 균열의 임계응력)

  • Lim, Won-Kyun;Cho, Hyoung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1026
    • /
    • 2003
  • The problem of predicting the fracture strength behavior in orthotropic plate with a crack inclined with respect to the principal material axes is analyzed. Both the load to cause fracture and the crack direction of crack growth arc of interest. The theoretical results based on the normal stress ration theory show significant effects of biaxial loading and the fiber orientation on the crack growth angle and the critical stress. The additional term in the asymptotic expansion of the crack tip stress field appears to provide more accurate critical stress prediction.

  • PDF

A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.