• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.026 seconds

A study of cumulative damage of carbon steel(SM45C) welded joint by block load with p-distribution (P 분포 블록하중에 의한 용접부의 누적피노 손상에관한 연구)

  • 표동근;안태환;신광철
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 1991
  • The most fatigue tests carried out under the either stress or strain control, but machines and structures had taken variable stress. This variable stress was treated as statistics based on p-type distributions. In this paper, the cumulative fatigue damage of SM45C round bar specimens having a center hole resulting from block loading with p-distributions in rotating bending conditions, is presented. The value of p was changed in the range from 0.25 to 1; 0.25, 0.5, 0.75, 1. The following conclusions were obtained through the constant stress amplitude experiments and the block loading experiments. (1) In constant loading test, fatigue life was affected by cyclic rate. From experimental data, N$_{f}$ (100cpm)/N$_{f}$(3000cpm)equal to 0.56. (2) In case of the cyclic rate 100cpm and 3000cpm, at the high stress amplitude level the crack propagation life N$_{*}$f is longer than the low stress amplitude level. (3) Miner's hypothesis may be valid for p=0.75 and prediction of fatigue life by Haibach's method agree with experimental data well for the case p=0.5, while the modified Miner's method agree with experimental data well for the case p=0.25.5.

  • PDF

An Experimental Study on the Shear Performance of High-strength Concrete Beams Made with Recycled Aggregate (재생골재를 사용한 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구)

  • 박우철;이경희;박완신;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.879-884
    • /
    • 2001
  • The use of recycled-aggregate concrete is increasing faster than the development of appropriate design recommendations. In addition, recycled-aggregate and higher compressive strengths are two of the most desired characteristics to improve the use of concrete as a construction material. The paper reports limited experimental data on the shear capacity of high-strength recycled aggregate concrete beams. Ten beams were tested to determine their diagonal cracking and ultimate shear capacities. The variable in the test program were concrete strength(300, 500 and 700kgf/$cm^{2}$), and shear span/depth ratio (a/d : 2.0, 3.0 and 4.0). Test results indicate that the ACI Building code prediction of Eq.(11-3) and (11-5) for high-strength recycled aggregate concretes are unconservative for all beams (with concrete strength 300, 500 and 700kgf/$cm^{2}$, a/d ratios 2.0, 3.0 and 4.0). But Zsutty Equation for high-strength recycled aggregate concretes is conservative for all beams. The results of the experimental investigation on the cracking patterns for beams show that the angle that the critical inclined crack makes with the horizontal axis decreases with increasing a/d.

  • PDF

Prediction of Deflection of Reinforced Concrete Beams due to Creep (크리프에 의한 철근콘크리트 보의 처짐 예측)

  • 이상순;김용빈;김진근;이수곤
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 1998
  • An approximate method for the calculation of creep deflections of reinforced concrete beams under sustained service loads is proposed. The position of neutral axis and strain and stress distribution of fully cracked section after creep is determined from the requirements of strain compatibility and equilibruim of a section and then the long-term flexural rigidity of fully cracked section is determined based on the new neutral axis. The long-term flexural rigidity of uncracked section at the level of the reinforcenment. The approach of calculating long-term effective flexural rigidity and defections is similar to the current American Concrete Institue procedure for calculating effecitve moment of inertia and short-term deflections. The accuracy of the analysis is verified by comparison with several experimental mesurements of beam deflectons. The result is good between the theotetical values and mesured valus.

Strengthening of non-seismically designed beam-column joints by ferrocement jackets with chamfers

  • Li, Bo;Lam, Eddie Siu-Shu;Cheng, Yuk-Kit;Wu, Bo;Wang, Ya-Yong
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1017-1038
    • /
    • 2015
  • This paper presents a strengthening method that involves the use of ferrocement jackets and chamfers to relocate plastic hinge for non-seismically designed reinforced concrete exterior beam-column joints. An experimental study was conducted to assess the effectiveness of the proposed strengthening method. Four half-scale beam-column joints, including one control specimen and three strengthened specimens, were prepared and tested under quasi-static cyclic loading. Strengthening schemes include ferrocement jackets with or without skeleton reinforcements and one or two chamfers. Experimental results have indicated that the proposed strengthening method is effective to move plastic hinge from the joint to the beam and enhance seismic performance of beam-column joints. Shear stress and distortion within the joint region are also reduced significantly in strengthened specimens. Skeleton reinforcements in ferrocement provide limited improvement, except on crack control. Specimen strengthened by ferrocement jackets with one chamfer exhibits slight decrease in peak strength and energy dissipation but with increase in ductility as compared with that of two chamfers. Finally, a method for estimating moment capacity at beam-column interface for strengthened specimen is developed. The proposed method gives reasonable prediction and can ensure formation of plastic hinge at predetermined location in the beam.

Formation of Thicker hard Alloy Layer on Aluminum Alloy by PTA Overlaying with Metal Powders (플라스마 아크 紛體肉盛法에 의한 Al 合金의 硬化厚膜 合金化層의 形成)

  • ;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Effect of Si metal powders addition with the plasma transferred arc(PTA) overlaying process on characteristics of the alloyed layer in aluminum alloy(A5083) has been investigated. The overlaying conditions were 175-250A in plasma arc current, 500mm/min in travel speed, the 5-20g/min in powder feeding rate. Main results obtained are summarized as follows. 1)Sufficient size of molten pool on surface of base metal was required for forming an alloyed layer; in a fixed travel, the formation of alloyed layer with clear and beautiful surface depend upon the plasma arc current and powder feeding rate; the greater plasma arc current and the smaller powder feeding rate were, the better bead was formed. Optimum alloyed conditions by which an excellent alloyed bead obtained was 225A in plasma arc current. PTA process made it possible to form an alloyed layer with up to 67wt% Si. 2)Microstructure in the alloyed layer was in accord with prediction from the Al-Si phase diagram 3)The hardness of the alloyed layer increased in proportion to Si content. 4)As volume fraction of primary Si increased, the specific wearness of the alloyed layer was significantly improved. However, no further improvement was found when the volume fraction was greater than about 30%. 5)Utilizing the PTA process, a crack free alloyed layer with maximum hardness of about Hv 310 could be obtained.

  • PDF

Prediction of Deformation of Shear Reinforcement and Shear Crack Width of Reinforced Concrete Members using Truss Models (트러스 모델을 이용한 철근콘크리트 부재의 전단철근 및 전단균열폭의 변형 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.49-56
    • /
    • 2004
  • This paper predicted the shear deformation, such as strain of shear reinforcement and shear track width, of reinforced concrete (RC) members using Transformation Angle Truss Model (TATM) in order to apply to the shea, analysis of RC buildings. To check the validity of TATM for the shear deformation of RC beams, four RC beams with different shear span-to-depth ratios were cast, instrumented and tested. Observed results were compared with theoretical results by MCFT(Response-2000), RA-STM, FA-STM, and TATM. The proposed model, TATM, better predicted the relationships of the shear stress-strain of shear reinforcement and the shear stress-shear track width than other truss models.

  • PDF

Prediction of fracture toughness for turbine rotor steels from their mechanical test results (터어빈 로우터용 강에 대한 기계적 성질로부터 파괴인성치$K_IC$예측에 관한 연구)

  • 이학문;정순호;장윤석;이치우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.717-724
    • /
    • 1987
  • Mechanical properties tests and fracture toughness tests of turbine rotors were performed in the wide range of temperatures, -150.deg.C-+150.deg.C, and fracture toughness values from above tests were compared with the estimated values from mechanical properties at lower and upper shelf temperatures and FATT. The relations between mechanical properties and $K_{IC}$ properties proposed by Rolfe and Begley were reviewed and confirmed through these experimental results. On the fracture surfaces of some specimens which were satisfied with the Ikeda's $K_{IC}$ criterion micro dimple zone was detected at the rear of fatigue crack zone and it was confirmed that these specimens were not satisfied with the thickness requirement of ASTM E 399.E 399.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Evaluation of Adhesive Bonding Quality by Acoustic Emission (음향방출시험에 의한 복합 재료 접합부의 비파괴평가)

  • Lee, J.O.;Lee, J.S.;Yoon, U.H.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • Prediction of fatigue life and monitoring of fracture process for adhesively bonded CFRP composites joint have been investigated by analysis of acoustic emission signals during the fatigue and tension tests. During fatigue test, generated acoustic emission is related to stored elastic strain energy. By results of monitoring of AE event rate, fatigue process could be divided into two regions, and boundaries of two regions, fatigue cycles of the initiation of fast crack growth, were 70-80% of fatigue life even though the fatigue life were highly scattered from specimen to specimen. The result shows the possibility of predicting catastrophic failure by acoustic emission monitoring.

  • PDF

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.