• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.028 seconds

An application of damage detection technique to the railway tunnel lining (철도터널 라이닝에 대한 손상도 파악기법의 현장적용)

  • Bang Choon-seok;Lee Jun S.;Choi Il-Yoon;Lee Hee-Up;Kim Yun Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1142-1147
    • /
    • 2004
  • In this study, two damage detection techniques are applied to the railway tunnel liner based on the static deformation data. Models based on uniform reduction of stiffness and smeared crack concept are both employed, and the efficiency and relative advantage are compared with each other. Numerical analyses are performed on the idealized tunnel structure and the effect of white noise, common in most measurement data, is also investigated to better understand the suitability of the proposed models. As a result, model 1 based on uniform stiffness reduction method is shown to be relatively insensitive to the noise, while model 2 with the smeared crack concept is proven to be easily applied to the field situation since the effect of stiffness reduction is rather small. Finally, real deformation data of a rail tunnel in which health monitoring system is in operation are introduced to find the possible damage and it is shown that the prediction shows quite satisfactory result.

  • PDF

Fatigue Crack Propagation in Coped Stringers of Steel Railway Bridges (강철도교 바닥판 세로보 절취부의 피로균열 진전해석)

  • Choi, Dong-Ho;An, Woo-Sung;Choi, Hang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.557-562
    • /
    • 2003
  • The responses of the floor system of a railway bridge are investigated for fatigue life prediction of damaged members using fracture mechanics approach. Numerical analysis of the structure is performed in order to see the influence of track-structure interaction and continuity of the truss connection on the response of the bridge members. Fatigue crack growth analysis is carried through equivalent stress obtained from time-history analysis. The results of time-history analysis agree with measured responses. The fatigue propagation life increases as the curvature in the coped stringer increases.

  • PDF

Prediction of Transverse Surface Crack using Classification Algorithm of Neural Network in Continuous Casting Process (연주공정에서 신경망의 분류 알고리즘을 이용한 횡방향 표면크랙 예측)

  • Roh, Y.H.;Cho, D.H.;Kim, D.H.;Seo, S.;Lee, J.D.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.100-106
    • /
    • 2018
  • In the continuous casting process, the incidence of transverse surface cracks on the piece may occur by multiple and diverse variables. It is noted that mathematical models may predict only the occurance of the transverse surface cracks, but can require a lot of time (more than three days) to produce a result with this process. This study applied neural networks to predict whether the cracks on the piece surface occurs or does not occur. The computation time was shortened to three minutes, making it applicable to an on-line program, which predicts the non-cracks or cracks of the piece surface in the actual continuous casting process. In addition, the operating conditions to prevent the occurrence of the transverse surface cracks, using decision boundaries were also suggested.

INFLUENCE OF INCLUSION ON INTERNAL DEFECT IN MULTI-STAGE EXTRUSION

  • Yoshida Y.;Fukaya Y.;Yukawa N.;Ishikawa T.;Ito K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.51-54
    • /
    • 2003
  • Internal defects such as chevron crack occasionally occur in the process of cold extrusion or cold drawing. It is known that the existence and property of inclusion greatly influences the generation of the internal crack. However, in the plastic working field, research about the effect of the inclusion on the fracture is not theoretically analyzed. This paper describes effects of the physical property of inclusion on the internal fracture generation in the process. Prediction of fracture was evaluated by critical damage value calculated by the equation of Cockcroft & Latham and its change by the inclusion physical property such as size and stiffness was investigated.

  • PDF

Experimental study of the torsion of reinforced concrete members

  • Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.713-737
    • /
    • 2006
  • This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.

Overload Analysis and $J_e$ Based Fatigue Life Prediction of Spot-Welded Auto Seat Belt Anchors (점용접된 차량 안전벨트 앵커의 과부하해석 및 $J_e$에 의한 피로수명예측)

  • Choe, Jin-Yong;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.662-670
    • /
    • 2001
  • We evaluate the effectiveness and validity of J(sub)e, which comprehensively describes the effects of specimen geometry and loading type, in predicting the fatigue life of auto seat belt anchor panel. We first simplify the heat affected zone model to reduce the number of finite elements. We then establish finite element models reflecting the actual overload behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we obtain the effective crack driving parameter J(sub)e composed of its ductility-dependent modal components. It is confirmed that the J(sub)e concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

Stress Intensity Factors of a Sheet with an Eccentrically Inclined Crack Subjected to Pure Bending (편심 경사균열 을 가진 판 이 순수굽힘 을 받는 경우의 응력확대계수)

  • 최선호;조상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 1985
  • In the fracture mechanics, the determination of the stress intensity factor value is vital for the prediction of a material fracture behavior. So many data concerning to the S.I.F. have been presented by many investigations to meet endless requrement. In this paper, the stress intensity factors of a sheet with an eccentrically inclined crack subjected to the pure bending moment were investigated theoretically by using of the complex mapping function to determine the Muskelishvili's comlex stress functions. Moreover, the theoretical value was compared with the result obtained from photoelastic esperiment. As a result, it was confirmed that both values coincided with satisfactorily within the margin of 2-3% devition; The results theoretically derived are right.

Stress Fields and Deformation Caused by Sliding Indentaion of Brittle Materials (압자와의 미끄럼 접촉에 의한 취성재료의 응력분포 및 변형에 관한 연구)

  • 안유민
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.62-70
    • /
    • 1994
  • An analytical model of the stress field caused by sliding indentation of brittle materials is developed. The complete stress field is treated as the superposition of applied normal and tangential forces with a sliding blister approximation of the localized inelastic deformation occuring just underneath the indenter. It is shown that lateral cracking is produced by the sliding blister stress field and that median cracking is caused by the applied contact forces. The model is combined with an experimental volume change measurements to show that the relative magnitude of tensile stresses governing lateral crack and median crack growth varies with the magnitude of the applied load. This prediction is consistent with the different regimes of experimentally observed cracking in soda-lime glass.

Thermal Crack Control about of LNG in Inchon (인천 LNG 지하탱크 Bottom 의 온도균열제어)

  • Koo, Bon-Chang;Ha, Sang-Wook;Kim, Dong-Seuk;Ha, Jae-Dam;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.291-296
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is s serious problem, particularly in concrete structures such as bridge piers. thick walls, box type walls, mat-slab of nuclear reactor building, dams of foundations of high rise buildings, etc. As a result of the temperature rise and restriction condition of foundation, the thermal stress which way induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which consider steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis, Secondly it shows the application of the cracks control technique like the bottom of No.15,16 Underground LNG Tank in Inchon.

  • PDF

Finite Element Analysis for the Prediction of Durability of Idler Wheel of Tracked Vehicle (궤도차량용 휠의 내구성 예측을 위한 유한요소 해석 기법 연구)

  • Lee, Kyoung-Ho;Roh, Keun-Lae;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.676-682
    • /
    • 2009
  • The idler wheel installed at the front side of the newly developed tracked vehicle didn't meet the durability requirement by showing the crack failure near the jointed region at the wheel during the field test. To find the crack developing mechanism we constructed finite element model for the idler wheel representing the behavior of interface between each suspension units, material properties from the material test data and actual loading conditions. This paper shows a result that maximum von Mises stress near the bolt hole on the outer rim is higher than inner idler coressponding to the actual test result and that result was reversed by adopting the reinforcement outside of the outer rim.